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Abstract:

The article presents some alternatives to plotind analyzing sequences as networks. The
point of view proposed is to consider sequenceepadtas oriented graphs. Events are treated as
nodes in the graph while the arcs, i.e. the tiégden events that connect the nodes, are defined by
the transitions of subjects between temporally @ajaevents. The idea behind the representations
discussed is that the patterns combine to formralenlying narrative structure more complex than
can be depicted through a network.

The purpose of the paper is to find alternative sy study sequences. On the one hand, it
explores ways different from those of existing akzations of sequences. On the other hand, it
explores alternative ways to extract the informatomntained in the sequences. The aim in both
cases is to find new perspectives from which tastsequences. The overall goal is to open the
doors to new ways of identifying potential patteonsinderlying structures.

Several graphic examples are provided in the attéobighlight the limits and potentials of
this approach to the study of sequences. The psage=, for the examples and analysis, data and
results of a recent study conducted by myself aasctareers in Italy (Bison, 2011b).

Finally, what follows is the result of the first emmcal evidence collected by this
experimental study, conceived for this conferem@an therefore well aware that what follows will
be partial in some of its passages. Moreover, rdmadwork outlined may not be entirely clear and
exhaustive in regard to the reasons for using orleeoother of the methods presented here.

1.0 Introduction.

What happens if we decide to plot sequences ashgrapa network? Can this approach
increase our knowledge of the underlying strucaar@mon to the single sequences? Also, will this
approach bring to the surface the structures, mattand careers still (perhaps) hidden to our eyes
and knowledge?

The literature has focused closely on the problessociated with mathematical-statistical
techniques to extract underlying patterns fromtaossequences (Abbott and Forrest,1986; Dijkstra
W, Taris T, 1995; Billari, 2001; Berchtold and Raft, 2002; Elzinga, 2003; Elzinga and Liefbroer,
2007; Bison 2006; Ritschard, Gabadinho, Muller, &tdder 2008; Widmer and Ritschard 2009;
Gauthier JA, Widmer E.D., Bucher P., Notredam@@.0; Bison 2011a), but it has devoted little
space to the representation and visualization @fieseces. This does not mean that little has been
done in practice? The tools developed in recentsyea Stata (Brzinsky-Fay, Kohler & Luniak,
2006) and R (TraMineR: Gabadinho, Ritschard, MulBuder, 2009 & 2011) have made life easier
for researchers who want to plot a set of sequeandfr who need to read the content of each
cluster obtained from a cluster analysis. What &amis that, compared with the effort to find tools
which allow the treatment of sequences as ‘wholess attention has been paid to their graphical
representation.

At present, there are two main types of represiemtal he first is based on the visualization
of changes in the composition of events over tilm@mples are state distribution plots and modal
state sequences (Gabadinho, Ritschard, Muller,egti#011). The second type is the sequence
index plot (Bison 1999; Bison & Esping-Andersen @0GBchereer, 2001) which translates a
sequence into a coloured line.

These two main ways to represent sequences haggea of limitations. State distribution
plots and modal state sequences describe macrgefiahut not micro ones. Both display the
changes over time of the marginal distributionghef phenomena under observation. These pictures
are useful if one is interested in understandirggdihange over time of the composition of a given
phenomenon, for example the proportion of employedkers, unemployed workers and first job-
seekers in the labour market.



Unfortunately, these graphs are inadequate if wdarderested in understanding the structure
of the career pattern. Put differently, state thstion plots and modal state sequences are one-
dimensional graphs which furnish little informatiabout micro changes, and even less about how
careers develop and the paths followed by indivglaad groups.

By contrast, such information is yielded by thewsage index plot. In this case, the level of
detail is the most precise and accurate that caachreved in the visualization of the sequences. It
is theoretically possible to represent every single sequenceiimggeggraph. This makes it possible
to follow point-to-point, instant-by-instant, thellf unfolding of the sequence over time. Moreover,
the physical proximity of each line (expertly oreléy to the other produces a second result: that is,
insight into the possible existence of common ulydeg patterns followed by multiple actors.

On the other hand, these are complex graphics andmislead the researcHelhe main
problem is that they are interpreted by means efsnses, which sometimes conceal things or
show them in a different perspective. For instamge may be visually attracted by some elements
or some graphical structures or specific configaret of colors and shapes in the graph and neglect
others. As a result, the graph is read and intezgdne one way rather than another.

Not only sight but also our mind can deceive usr @und, in fact, is adept at finding
regularities even when they do not exist, or at ifyody the complexity degree of the system that
we are studying. Hence it is no surprise if we reggilarities, patterns or structures that, in fdot,
not exist. Similarly, our mind is equally adeptfiading differences, irregularities or entropy even
in cases where there is order and structure. Obljijdlam not here to talk about perception. This |
leave to psychologists, who know much, much moas thdo. What | want to emphasize is that
these graphs may mislead us. These graphs mayatarsea lot more information than is we are
reasonably able to capture.

For instance, suppose we want to identify graphjcahether there are substantial differences
in class careers between men and women. Not beiagested in people who do not change class,
we select from the databdsehe subset of men and women who, in the firstyiears of their
working careers, changed class at least once, dnud & the end of the tenth year, were in the
urban working class (lllb+V-VI+Vlla). The data yiel(graph 1.0) two sequence index plots
depicting respectively the working careers of ttaéidn women and men who have changed their
occupational class position at least once, and aftey ten years are in the working class (lllb+V—
VI+Vlla).

The two graphs show some differences between mé&mwamen. For example, the proportion
of women who start in class llla and after ten geamd up in Class (lllb+V-VI+VIlla) is greater
than that of men. Conversely, the proportion of mé start in the agricultural classes (IVc and
Vlic) is greater than that of women. However, if weclude the different proportion of classes on
the first occupation, and rule out that the différéhicknesses of the lines are due to different
sample sizes of men and women, other differen@aa@rapparent.

To be precise, the differences found are irrelexanbur purposes. Furthermore, we could
obtain this same information with simple frequertigtributions and some tablealso looking
with carefully, we cannot in any way argue thateaist one specific and distinctive pattern among
men or women emerges clearly from the two graphs.

Men and women have the same career patterns. Botipgycomprise subjects that, having
started their careers among upper classes, entepreand professionals (I + 1), or the middle
class (llla), or the urban petty bourgeoisie (IVaB) agricultural petty bourgeoisie (IVc) or the
agricultural working class (Vlic), have moved ditgcto the urban working class (lllb+V-
VI+Vlla).

! Possible technical limitations may be encountevadn the number of sequences is greater than tle® viesolution
and/or the area reserved for the display is smédken the plot sequences.

2 Interpretation of these graphs should always babiged with other measures that help the reseatchezad the
content.

% For information about the data see Bison (2011b).



The same complex patterns are to be found in bo#phg, i.e. the patterns whereby
respondents move across multiple classes in thget@s of observation.

Fig. 1.0. Sequence Index Plot. Working careerséhd in class Illb+V-VI+Vlla.

Women(N=126) Men (N=242)

There are workers (men and women) (a) that statttenmiddle class, descend to the urban
working class, return to the middle class and fim@sh in the urban working class. Or (b) there are
workers who start in the middle class, move latgital the urban petty bourgeoisie and then end in
the urban working class. Finally, there are otherkers who (c) begin and end in the urban
working class, passing through one or more lowemtermediate classes, such as white-collar
middle class, lower middle class, or urban andcadjtire working class.

The results from the charts are so clear that didige us to draw a single conclusion: that,
except fordifferencesat the beginning of their careers, already knowthe literature, the career
patterns of men and women who end in the workirg<l(lllb+V-VI+Vlla) after ten years are
similar. The numbers of the subjects exhibit onéherother pattern changes by gender, but there is
no change in either the career pattern or thetstreiand the concatenation of the temporal events.

The problem, however, is whether this conclusioaasially correct. What if it is wrong? Is,
for instance, this conclusion due to our inabitdygrasp what is depicted by the graph as a 'wRole’
Have we failed to understand that these change®lotir from one state to another, apparently
similar, describe different patterns for men andnga? And, in addition to a common pattern, do
there exist others patterns that we cannot seetlatdare characterized by a different temporal
'shape’ of events? Has the different temporal shaipevents generated seemingly equal career
patterns but which, in fact, are very different@dy, is it possible that the two groups are scabje
to different mechanisms that generate patterns dhbt apparently are similar but, in fact, are
substantially different as regards timing and sRape

We clustered individuals according to the closerasthe shapes of their careers, but we
never really considered thepHysical form of the career shared by these subjects® dssingle
pattern common to all of them, like a great rivieattflows slowly to the sea, or is it instead lke
myriad of streams that converge to form a large iamgetuous river? And finally, how the do
events flow?

These are just some of the doubts that have paissaegh my mind over the years and that
have induced me to look elsewhere for new roads, standpoints from which to view the object
'sequence’.

The use of Social Network Analysis suggested is gfaper is double. One, is to find new
ways to present results, and second, as a newegotikspfrom which to observe sequences. To do
this, however, we need to see sequences, not i@glumls moving from one state to another, but as
groups of individuals that exhibit common caredtgras.



Obviously the main problem is how to bring out toenmon pattern. To date we have used
classification techniques. With this approach wevehan fact, continued to operate from a
perspective that differs little from the one noripaised with any other type of information given to
the variables. We have, in ways of varying comgig»aynthesized the information contained in a
sequence into some variable which we have thetetteéa the same way as all the other variables.

In making these changes, however, it has only applgrbeen possible to capture the entire
information structure of a sequence, its shapeitarttming. We have assumed that these structures
can be captured only at a later time, as a re$glbme aggregation of a series of sequences wathin
cluster. Yet there is nothing to guarantee thattwis have obtained is real and not the result of
some technical mathematical trick. Our mind is vegver at finding regularities even where they
do not exist. Furthermore, we ourselves are vely @bfind models or theories that explain some
or other pattern 'ex post'.

Obviously | am exaggerating. In fact, there aresoe@able grounds to believe that what we
have identified through analysis really exists anttherefore not a mathematical artifact.

What | argue is different. In some ways, in thigsfufor models that extract information from
sequences, we have canceled the sequences thesng&alvefocus has shifted from career patterns
to the distances between sequences. We have stusidat of our object of study, we have hidden
behind a number: a distance. We have ceased tovebser research object, the career, as a whole.

Back to observe how careers develop over timet S¢ain to take into account their dynamic
evolution. This proposal starts from these consiti@ns. It is to give physical form to sequences
and their underlying generative processes. It isansform sequences into objects to explore like a
DNA chain or to follow like a Google map. And, ihet near future, also to be able to model
dynamically the processes that have generatedcHisgmttern, a given sequence.

2.0 Visualizing and studying sequences as networks.

The approach proposed in this paper is not a nesv ®here are several attempts in the
literature to combine sequence analysis and soetatork analysis. There follows a brief overview
of the main applications simultaneously involvirggworks and sequences.

That networks have entered many fields of sciemoeild no longer come as a surprise. A
network (or a graph) is a collection of nodes (ertices), and the connections among them are
called arcs, ties, edges. Networks are used tarilesenodel and analyze an enormous array of
phenomena, including physical systems, communicat&iworks, social systems such as networks
of friendships or corporate and political hieraeshi physical relationships such as residue
interactions in a folded protein, or software sysg\Wasserman & Faust 1994, Colizza et al. 2006;
Guimera et al. 2007; Kuchaiev et al. 2010). Som¢hefvarious applications of networks relate
precisely to the study and depiction of sequences.

Although it has been introduced recently, biologythe scientific field where the most
developed application of network techniques is ntadbe study of sequences. Everything suggests
that this approach has not only become a usefliinadbe study of sequences but in the near future
may lead to considerable progress in biology. Axh&iev writes, Sequence comparison and
alignment has had an enormous impact on our undedshg of evolution, biology and disease.
Comparison and alignment of biological networkd wibbably have a similar impact(Kuchaiev
0., 2010, p.1)

In this regard, there is a wide range of differemtys to decline the relationship between
sequences and networks. The first and most obwoass to study of the mechanisms that spread
certain viruses in order to discover the sourcasfettion, as in the case study by Gardy (2011).

An outbreak of tuberculosis occurred over a 3-ygariod in a medium-size
community in British Columbia, Canada. The resulis mycobacterial interspersed
repetitive unit—variable-number tandem-repeat (MIRNTR) genotyping suggested the



outbreak was clonal. Traditional contact tracingldiot identify a source. We used whole-
genome sequencing and social-network analysis inefiort to describe the outbreak
dynamics at a higher resolutiofGardy et al., 2011).

Or, from a historical perspective, the evolutiortttghuman mitochondrial genonas studied
by Herrnstadt et al. 2002.

The evolution of the human mitochondrial genomecliwracterized by the
emergence of ethnically distinct lineages or haptogs. ... We have used reduced-
median-network approaches to analyze 560 complategean, Asian, and African mtDNA
coding-region sequences from unrelated individuabs develop a more complete
understanding of sequence diversity both within hativeen haplogroupgHerrnstadt et
al. 2002, p.1)

Applications, however, do not only mimic the apation of social science to the study of
diffusion mechanisms. Another application concehesstudy of cells and their relationships. The
aim is to redefine the system in which the paréscamnected together to form a ‘whole’. As Yoon
states:

.. cells are not mere collections of isolated paBmlogical functions are carried
out by collaborative efforts of a large number @llalar constituents, and the diverse
characteristics of biological systems emerge assait of complicated interactions among
many molecules. As a consequence, the traditiedhlationistic approach, which focuses
on studying the characteristics of individual mailles and their limited interactions with
other molecules, fails to provide a comprehensictupe of living cells. In order to better
understand biological systems and their intrinstanplexities, it is essential to study the
structure and dynamics of the networks that anieenfthe complicated interactions among
molecules within the cell(Yoon 2012, p.1).

In this same work, Yoom identifies three main aggtions of comparative network analysis
to the molecules that compose cells.

. comparative network analysis methods can be 8ipalivided into three
categories: (1) network querying, (2) local netwakgnment, and (3) global network
alignment. In fact, comparative sequence analysis fheen shown to be very useful for
predicting novel genes and studying the organizatibgenomes, as well as in many other
applications. Similarly,_comparative network anadysan serve as a valuable tool for
studying biological networks. Comparing the netwgod¥ different species provides an
effective means of identifying functional modulesy.( signaling pathways or protein
complexes) that are conserved across multiple speaind it can lead to important insights
into biological systems.{Yoon 2012, p.2)

“Network guerying aims at finding the subnetwoiks “target network” that are
similar to a given “query network.” This can be ds& search for a known functional
module or pathway in the biological network of dreat species, thereby allowing us to
transfer the existing knowledge of a well-studipelcies to other less-studied species. Local
network alignment tries to identify similar subnetiw regions that belong to different
networks. This method can be useful for detectiogeihfunctional modules that are
conserved across different species. Finally, glaietivork alignment aims to find the best
overall alignment of two or more networks. Thisulesin a consistent global mapping
between nodes that belong to different networkeeriog (nearly) all nodes in the given
networks.(Yoon 2012, p.2-3)

Finally, we have what is probably the most impartand widespread use of networks to
study sequences in biology. This goes by the nanpmhylogenetic networkdn fact, we may say
that many of the previous applications fall witlihis application. These as many of the earlier
researches are based on studies of gene mutations.



phylogenetic networks should be employed when utate events such as
hybridization, horizontal gene transfer, recombinat or gene duplication and loss are
believed to be involved, and, even in the abseficch events, phylogenetic networks
have a useful role to playHuson & Bryant 2006, p.254)

The term phylogenetic network encompasses a nurobatifferent concepts,
including phylogenetic trees, split networks, relite networks, the latter covering both
“hybridization” and ‘“recombination” networks, ad other types of networks such as
“augmented trees.”.

Recombination networks are closely related to atocegcombination graphs used
in population studies. Split networks can be olgdifrom character sequences, for
example, as a median network, and from distancésguthe split decomposition or
neighbor-net method or from trees as a consenstwgonle or supernetwork. Augmented
trees are obtained from phylogenetic trees by tisgradditional edges to represent, for
example, horizontal gene transfer. Other types loflggenetic networks include host-
parasite phylogenies or haplotype netwoiftuson & Bryant 2006, p. 255)

In effect, phylogenetic networks are distinguished three types of representation.

Under this very general heading, one can distinglistween a number of different
types of networks. Phylogenetic trees constitute type. A second type is the “split
network,” which is obtained as a combinatorial gealization of phylogenetic trees and is
designed to represent incompatibilities within abdtween data sets. A third type,
“reticulate network,” represents evolutionary hisies in the presence of reticulate events
such as hybridization, horizontal gene transferrecombination(Huson & Bryant 2006,
p.254)

The specific aim of the technique is to model greglly the mechanisms of virus
recombination (Wain-Hobson, et al. 2003; Huson &dit 2006; Bozek, 2009). Or, as argued by
Hudson and Bryant (2006)

A “phylogenetic tree” is commonly defined as afléabeled tree that represents the
evolutionary history of a set of taxa, possiblyhwiiranch lengths, either unrooted or
rooted.(Huson & Bryant 2006, p. 254)

It is therefore an attempt to use a graph (netwtokjepresent relationships between the
sequences (taxa, allelic profile, etc.). That is:

We propose to define a phylogenetic network asy"ametwork in which taxa are
represented by nodes and their evolutionary refetiops are represented by edges
(Huson & Bryant 2006, p.254)

This technique uses a special network representédianodel the distance matrix obtained
from the deviations between all the sequences.

One exception is the use of split networks to ViBeadistance matrices. The
“phenetic distance” between two taxa in a spligtwork is defined as the sum of the
weights (or lengths) of the edges along a shonpegh between the taxa (Bryant and
Moulton 2004). This distance can be computed direitom the associated splits and
weights and does not change for different splitvogk representations. The split network,
then, is a graphical representation of a collectiminsplits with weights. The interpretation
of the network therefore depends on exactly howspiies were constructed and assigned
weights. As we shall see, this varies considerdidyween methods and between
applications.(Huson & Bryant 2006, p.256)

| think that what the possible applications of ttype of technique could be in our field is
clear. For example, consider applications in thelstof the deviations of a group of sequences
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from an ‘ideal type’ sequence as proposed by (Atdrod Hrycak, 1990, Scherer, 2001; Wiggins et
al., 2007; Martin et al., 2008). Another applicatimould be to facilitate exploration of the matoix
the distances obtained by optimal matching techesqurinally, the application that may be the
most interesting, at least for the purposes of dhiigle, is the possibility of observing, throutjte
graphical display, the possible existence of distoareer patterns from a given set of sequences.

Not only biology has sought help from network asayin interpreting relationships between
sequences. Even before the development of thisestteamong biologists, social scientists had
begun to test the ground. In particular, historisatiologists in the early 1990s began to use
networks to solve their problems in studying segesrof historical events and/or narrative events.

This enabled them to make substantial contributiomghe understanding of particular
historical problems through the application of netkvmodels (Bearman 1993; Gould 1995, 1996;
Padgett and Ansell 1993; Rosenthal et al. 1987ké8aand Van Rossen 1997; Brudner and White
1997; White et al. 1999; Bearman, Faris and Moo8991 Franzosi (1999), 2004; Bearman and
Stovel 2001; Bearman 2002; Bearman, Moody and RAH3). Their applications focused on
persons, institutions, lineages, and other elemimiked by flows of resources, patronage, joint
commitment, and kinship (Bearman, Faris and Mod2§09).

Among these scholars, it is mainly Peter Bearmaa(@anFaris and Moody999;Bearman
and Stovel 2001; Bearman 2002; Bearman, Moody am 2003) who has developed a new line
of inquiry known as\arrative Network

By 'narrative network’, we refer to a strategy fepresenting narrative life histories
as networks of elements. Applying standard netiamhniques to this representation of the
narrative, we are able to identify some core elemefithe process .(Bearman & Stovel,
2001, p.71)

The central idea is to represent a historical nadiva as a graph, and to utilize
methods for analysis of graphs to reveal propertas historical event sequences.
(Bearman, 2002, p. 89)

The idea is to translate narrative sequences maaé events and relationships among events
into graphs consisting of nodes and links amongesodHowever, translating narratives into
networks is not straightforward, and it requirepaaticular set of assumptions by the researcher.
The most important of these is the assumptionttiestories told by individual respondents follow
a set of socially shared rules that underlie theati@e. Otherwise it would be impossible to
compare among stories.

We are not suggesting that the method we develop ikeapplicable only to odd
stories. By non-canonical we do not mean patho#dgior disturbed. Canonical
expectations are the fundamental expectations thraanize our experience. These
expectations tend to be extremely simple. One dgamapthe ‘continuity principle' that
governs our daily experiences. The continuity pplec(as canonical expectation) asserts,
for example, that when driving, our car will continto go down the road, that empty
spaces behind and in front of us will not sudddsdgome full of things, and that the road
behind us will stay behind us even after we hawedrpast it, as will the road in front, and
so on. It is culturally impossible to tell storisswhich all of the elements are organized by
canonical expectation; for example, 'l went for allkvand after | put my left foot down !
put my right foot down and then my left foot dowad a. And when | turned around the
path that | had been walking on was still theredidy a promising beginning of a story if a
non-canonical event (the path disappeared, for etajmaround which a story could be
organized is introduced. Abstracted to life storifsere is a more general point. Life
stories are accounts of how we became who we aree @ becomes possible to tell a life-
story, the account that is told cannot by defimitive canonical, e.g. the life lived is the
inexorable byproduct of the canonical way of lfie;, example, the life of the peasant for
whom death is meaningful. Life-stories are consetiyea hallmark of modernisth
(Bearman & Stovel, 2001, p.70)



These are not the only attempts made within théaksciences to translate sequences into
networks. Again with the intent to use networksépresent narrative sequences, there are those
scholars who have set out to describe how indivguese information and communication
technology.

[We use]... the narrative network as a device for representpatterns of
“technology in use.” The narrative network offersnavel conceptual vocabulary for the
description of information and communication tedlgges (ICTs) and their relationship to
organizational forms. We argue that as ICTs haveobre increasingly modular and
recombinable, so have organizational processesfands. The narrative network draws
on concepts from structuration theory, actor netwdneory (ANT), and the theory of
organizational routines. A narrative network exmes the set of stories (performances)
that have been, or could be, generated by combigind recombining fragments of
technology in usgPentland and Feldman 2007, p. 781)

There are, finally, attempts that go in the opmodiirection, from the network to the
sequences. For example, Vedres and Stark (2002rted the changing relationships over time
detected in a number of companies in states tlatnaturn encoded as sequences. The latter, in
turn, are treated with the standard techniques@fi@nce analysis. Specifically:

Property pathways are conceptualized as the patresequences of change that
firms undergo 1) in the composition of their owgpsstructure and 2) in their position
within network structures of ties to other entesps. These career pathways are neither
unidirectional nor plotted in advance. The landseamd topography of the socioeconomic
field are given shape and repeatedly transformedthy interaction of the multiple
strategies of firms attempting to survive in theefaf variable political, institutional, and
market uncertainties. ...

To identify patterns of change, the study drawssequence analysis, a research
tool that makes possible the study of historicalgessses in an eventful way similar to
historiography while retaining social scientific giibaction. Whereas sequence analysis has
given us a perspective on careers as historicalcesses but has not been applied to
business organizations, network analysis has bggliead to business organizations but
has not been done historically. The methodologimabvation at the heart of this study is
to combine the tools of sequence analysis and metarlysis to yield a sequence analysis
of changing network positionéStark & Vedres, 2002, p.74).

3.0 The narrative: a bridge between sequences analg and networks analysis.

A sequence is a story. A sequence is a standar@izddorderly narrative in which all the
elements/events/states that compose it are tenpanalered. As pointed out by Bearman and
Stovel (2001):

A basic requirement is that our data structures tes longitudinal (though they
need not be prospective). That is, they must bealdapof revealing process. A more
fundamental requirement is that our data refle@ glements that organize the process, as
versus those selected from the analyst's hat. Gmecs of data that meet both
requirements are life stories. Life stories provate 'endogenous’ account of how authors
got from 'there' to where they are. Just like thesrlife stories organize facts (elements,
states, events, etc.) into interpretable sequeandgpatterns to reveal a proce¢Bearman
& Stovel, 2001, p.76)

Here ‘order’ means that each element in the segqué&ndn temporal relation with what
precedes it and what follows it.



A sequence is a chain composed of as many ringfseas are distinct states in the narrative
encoded in it. It is a directed graph, where ea@n#state is a node and each node is tied to what
precedes and what follows it by the temporal lihewvents.

Finally, many are the reasons that lead us to \eeliat the advantages outweigh the
disadvantages into bringing in the analysis of segas within the network analysis. The main is
because in this way we put in communication twolegthat, in fact, pursue the same purpose, that
is to overcome the variable-centric vision in seastcommon structures.

From the view of social network analysis, the sbei@vironment can be expressed
as patterns or regularities in relationships amoingeracting units. We will refer to the
presence of regular patterns in relationshipsasicture (Wasserman and Faust, 1994, p.3)

The second reason is that in this way we can cagrthi@ power of the synthesis of sequences
with the power of the representation of the networkorder to treat complex structures in a
different way.

By treating events as nodes and relations betweamnts as arcs, narrative
sequences of elements are transformed into netwdysrepresenting complex event
sequences as networks, we are able to observe aabume structural features of
narratives that may otherwise be difficult to s@gearman, Moody and Faris 2003, p.64)

Adopting the network analysis perspective in thedgtof sequences is, however, to remain
within the fundamental paradigm of sequences aisalyghose ultimate purpose is to identify
regularities and structures and to understand lee@menon as a whole.

The general idea is that network representatiomafrative sequences provides
insight into the social meanings generated witharratives as a whole(Bearman &
Stovel, 2001, p.70)

To adopt the perspective of network analysis i® &ts adopt tools to represent complex
structures like sequences.

By representing complex event sequences as netweelkare easily able to observe
and measure structural features of narratives tinaty other-wise be difficult to see. There
are good reasons to think that insight into theusture of narrative processes may be
revealed by network methods that provide insigtd gocial structure. One simple reason
is that narrative data and 'network data' have matwious similarities. Specifically,
narrative, historical, and network data are locallyense, often cyclic, knotted, and
characterized by a redundancy of ties. These siitida suggest that the analysis of
narratives and event sequences using network metiag provide a promising avenue for
analysis.(Bearman & Stovel, 2001, p.71)

It is to bring out the hidden structures with tHeservation. As Gregory Bateson would say
(1984), it is to change the perspective. The pwpssto redefine the object by changing the
viewpoint from which it is observed. It is to makealifferent perspective, certainly new, and fos thi
reason, perhaps capable of furnishing new and aamgitary information about the underlying
structures and generative mechanisms.

Adopting a network perspective means shifting theu$ from the actors to the events, and to
relationships between events generated by thesadhis action may at first seem to contradict the
principles that underlie the analysis of sequenitefact, the primary goal is to study the evolatio
of the phenomena observed in their individual aarée order to build a “... logical narrative with
an inherent telos.” (Abbott, 1990, p.141).

However, on the need to shape a common structurg eertain point, through the
classification techniques we leave the individuatspective to examine the underlying structures
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representative of groups of sequences. Nor issthifs of focus from the actors to the events new in
sequence studies, for it has already been prop(Bidri, Furnkranz, and Prskawetz 2006;
Ritschard, Gabadinho, Muller, and Studer 2008)sThas yielded new knowledge about typical
sequences of states or events. In all these dhgegoal remains the same: to determine how events
combine together to form coherent structures oéasition between time t and time t +1 which we
denote with the term ‘career’.

4.0 From the sequences to the network.

To obtain this new representation, the first seefoidefine what the nodes are and what the
links between nodes are. We can conceive a sequserateas a recording of the succession of
states, observed at regular time intervals, onstree unit of survey. For example, the sequences
{EUEE} and {EUEU} may be a monthly recording of tleenployment positions of two subjects in
the first four months of their careéts.

However, nothing prevents us from representing eddmese two sequences as a directed
graph, where the nodes are the states observeithanieés between nodes are oriented according to
the temporal relationship between the states.

The first sequence {EUEE} would take the followifogm:

Fig. 1.0, Network plot of sequence {EUEE}

The second sequence {EUEU} would take the followmgn:

Fig. 2.0, Network plot of sequence {EUEU}

In this depiction, each node is in temporal retatmly with the node that precedes it at time
t-1 and with the node that follows it at time t+i the first sequence, for instance, because the no
E, at time 1, is the first one, it only has a link to U at tirgeThe node U, at time,tinstead has two
links, one incoming from node E which preceded ttmae t, and one outgoing to E, which follows
it at time .

This view, however, adds nothing to our knowledgea the career structure followed by the
two actors. We have only a different way to traitscthe information collected.

Yet, on closer inspection, these two sequences Baveral elements in common. This
suggests, for example, that, at least as regandigipation in the labour market, these two actors
have the first part of their careers in common.i®@ther words, these two workers share elements
which constitute a common pattern for the initiaitp of their careers.

On reaching this conclusion, we must shift our ®ofnom the individual sequences to what
they have in common and what differentiates thelms Enables us to configure a new and more
complex structure in which the common and the migstelements are combined to form a new
sequence with characteristics different from thtsat generated it. We have moved from a

* These sequences, in fact, are a transcript oftibiées that the subjects recount to reconstrugit thork histories.
Where, for example, for the first sequence {EUEtRE story is: "I was unemployed after my first nfoof work, but
fortunately the next month | found a new job thtaidk for two months."
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sequence based on the relationship between statesdquence based on the relationship between
events.

In this process of abstraction/generalization, taet $rom individual sequences and gradually
define a new sequence/graph in which the eventsralaionships between events have been
replaced the states and the relations betweersstate have thus moved progressively from the
individual path to the common pattern: from seqesrto the narrative.

At this point also the display and the nature efgnaph changes.

The nature of the nodes changes. We move front aflisdividual states to a configuration
of possible collective events which individuals @atess. It is change, for instance, from the class
position occupied by the subject at timéo the social class at tinteoccupied by one or more
actors. Each node of this chain ceases to be awidodl condition and becomes a collective
condition, an event: for instance, a social cladse weight of this node/class is given by the
number of individuals occupying this state at time

The type of relationship between the elements/noolesour graph/sequence changes.
Previously, the relationship between two elemends temporal. Element E was connected with
element U because U followed E temporally. It coblel said that the temporal order also
determined the relationship between the elemerds: te relation between two elements is given
by the probability of observing a transition betwé&o temporally adjacent states. Thus element E,
at time {, will be connected with element U, at timg if and only if at least one transition is
observed between E and U. In other words, thelebeia tie between E and U only if between time
t; and time £ there is at least one subject that moves fromgoemployed to unemployed. The
amount of these passages defines the transitidrapildgies between two events/nodes.

Finally, also the shape of the graph changes. &usly, the only form that the graphs could
assume was that of a chain. In this new form, sg¢verdes can coexist in the same unit of time and
several relations (links) between temporally cambigs nodes may be established.

This new graph has characteristics entirely difiefeom previous ones:

Fig. 3.0, Time network of sequences {EUEE};{EUEU}

(a) Has as many nodes as there are distinct elenretihe sequences. Each node represents
one event observed on one or more actors at tirniéd.absence of a node at time t
indicates that no one, at that moment, holds tbsitipn.

(b) While keeping the temporal order fixed, theklbetween events is given by transition
probabilities. That is, the link is defined as fireportion of individuals who are moving
from the node at time t to the node at time t +Hie Bbsence of the link indicates that
transitions between the two nodes are not observed,;

(c) Multiple nodes can be defined in the same ahiime. In the example of the two previous
sequences, observed at time t4 is both an eventineinployment and one of
employment.

(d) Several ties can start from the same node achréhe same node. In the case just
mentioned, after a common career path, one ofweatctors continues to be employed
while the other enters unemployment, thus creatifayk in the main pattern.
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Unfortunately, we have to deal in our surveys witge numbers of individual sequences
composed of dozens of states. This makes it implessnanually to perform the analyses and
graphs just introduced. There are several progrdaisenable the production of networks. The
most popular of them among sociologists is NetDravetDraw is social network visualization
softwaré which enables the graphic representation of nétsvimcluding relations and attributes. It
has some analytic capabilities and is distributedeaor with UCINET.

5.0 From NetWork to NetDraw.

NetDraw, as said, is a tool for visualizing soan@tworks. Its main function is to design
networks composed of actors, which are treateddss) and links between nodes, which represent
the relationships between the actors.

This software is relatively complex and requirespacial organization of the input data. In
our case, to remedy these problems it is preféaoede NetDraw in combination with UCINET.

To illustrate the preparation of the data, | shigkk the sequences in Table 1. Each of the six
sequences describes the trajectories followed byadors through five conditions coded with the
letters from (a) to (e). The first sequence, fatamce, begins with the state {a} and continues wit
the states{b—-a—-b—-a-c}.

Tab.1.0. List of six sequences of length six regméag six hypothetical class careers.

t1 t5 t6

—

t3

—

® 00 ocooll
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DO O0OTW®
R R TR D)
00000 o

The first step in preparing the data is to recdaestates of the sequences in order to ensure
that the temporal order of events does not changhe next phases. The strategy is simply to
generate a new coding that combines each indivisha& recorded in sequence with its temporal
position. In the example, the new coding of thetfsequence will be: {01a, 02b, 03a, 04b, 05a,
06¢}. This encoding allows, during visualizationdaanalysis with NetDraw, to identify the
individual states/events according to the tempaoraér in which they have occurred.

At this point, the switch into a directed graphnsmediately possible. The proximity of the
states, in fact, determines which elements ar¢éectl®@ each other, and the temporal order gives the
orientation of the arc. For example, in the firsgjgence, the states 0la and 02b are consecutive,
which suggests that the actor (1) has moved frene ¢8) to state (b) between time 01 and time 02.
In graphic terms, this transition is made visuddly an arc between 0la and 02b with the arrow
pointing to 02b.

By definition, each nodk; may be connected only with the nodtes that are located at time
t-1 and withk1 nodes that are located at ti¥el. Not allowed are ties between states located at
distances more than tintet 1. On applying this rule to the first sequenee,have that there is no
direct arc between 0la and 03a. Nevertheless, thestédl an indirect pattern connecting 0la and
03a through 02b.

® The NetDraw website igttp:/sites.google.com/site/netdrawsoftware

® For a quick introduction see Hanneman & RiddIed&)0wnebsitenttp://faculty.ucr.edu/~hanneman/nettext/C4_netdaw

" This is the main software for social network asidy Allows the computational aspects of graphs @aldulates an
ample amount of network measures (Hanneman & Ri@dl@5).
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As already mentioned, if we now proceed to consiacof the graph, we obtain as many
graphs as there are sequences taken individuath Graph takes the form of a chain and does not
add any new information to what we already know.

The solution is to move our focus from the indiatlsequences composed of sequences of
states to events, and to transform the patteredray the actors in their movements between states
into the links between events. If we consider thesequences as a matrix of rows and columns, we
can see that:

a) Each column of the matrix can be interpreted aariable whose modalities are the events
observed in the sample/population at that time aspaated cross-sectional sample. At
time t, for example, only five distinct events are detdcin the six sequences because
subjects 3 and 4 both begin in position (c). Atdim the events are reduced to three.
Subjects 1,2,3 are in state (b), subjects in 4&5ra(c), and subject 6 is in state (e). At time
t3 the number of events is further reduced. All sikjects assume state (a).

b) On observing the phenomenon from another petispeone notes that between time t
and time 1, the first subject changes from state (a) tot{i®,second subject remains in the
same state (b). In the case of subjects 3 and d,hald both begun at position (c), one
changes state and goes to (b) while the other remmai(c).

These two different perspectives can be displaggdther so that one can see the sequences
through a square matrix, called the Adjacency Matri Sociomatrix, which has as many rows and
columns as there are states (nodes). Each cellg Pab) of the matrix defines the link between two
nodes. Cell values greater than zero indicate ttiexe is a link between two nodes, while zero
indicates the absence of a relationship. For exampl Table 2, the cell (0Ola, 02b) has value 1,
which establishes the existence of a link betwemterdla and node 02b.

Tab.2.0. Adjacency matrix of the six sequencesahld 1.
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The directionality of the link is established by thosition of the cells compared to the main
diagonal. If the cell (with non-zero value) is abawe main diagonal, the direction of the link is
from the node row to that of the column; if it isldw the diagonal, it runs from the node of the
column to that of the row. In our example, the @@lla, 02b) indicates that the link between the two
nodes ranges from Ola to 02b.

The cell values represent the force or the weidghthe link between two nodes. In our
example, the cell (03a, 04b) has a value of 6. Vhige indicates that between timeahd time #
six transitions were observed between (a) andlifbdther words, six actors in this range moved
from state (@) to state (b), or more preciselymfievent (a) to evehtb).

8 In this new perspective nodes are no longer staittin a single sequence but become events expeieby one or

more actors at time t.
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This particular matrix is now ready for use by Net® to produce the graph (fig. 4.0).

Although the input data are quite difficult, Netiraffers a wide range of possibilities to
manipulate the graph. There are three principakipdgies. The first is that the program has a
number of optimization routines in the spatial podjon of the graph. In particular, NetDraw
provides a set of Multi-Dimensional Scale algoriththat automatically place nodes and links in
the space so as to maximize the network’s reatiablihe user can still manually intervene in the
spatial arrangement of the nodes. The program sallthe user to drag, move and change the
location of the various components of the graph.

The second characteristic is that weights can bengio the links. In our case, for example,
the weight is given by the number of actors thadspthrough the pattern. NetDraw uses this
information on the different numbers by varying theekness of the link-pattern between the two
nodes (Fig. 4.0). A second opportunity is beingeabl view only the links that exceed a certain
weight. This utility program allows the user to atie graphs in which links appear only above a
certain threshold. This reduces complexity and ougs the readability of the network.

Fig. 4.0. Time sequence network of the six sequeirc@&able 1.0.

The third and most important opportunity offered NgtDraw is that of attaching specific
attributes to each node of the network. In our cagecan use aggregate information. For example,
we can define an attribute that count the numbexctdrs who stay in the node at time t; or define
an attribute ‘event’ that encodes the type of genevent belonging to each node. For example,
nodes Ola, 03a, 05a, which belong to event (a)asseciated with code 1, nodes 01b, 02b, 04b,
05b belonging to event (b) are associated with &d&ad so on for the remaining nodes.

NetDraw displays these attributes by transformhrent into the colour, size and shape of the
node. In the example of Figure 4.0, a colour i®gito each node depending on the generic event to
which it belongs, while the size is given accordioghe number of actors in the node at time t.

Colour, size and shape can be modified simultaslgoon the same node. This makes it
possible considerably to increase the network’slabgity by highlighting structures that might
otherwise escape.

Obviously, the graph of Figure 4.0 is based onHad sequences. A real example is shown
in Figure 5.0. The network displays a class capegtern identified by a study of the effects of
education and social origin on the class careesssaimple of Italians (Bison, 2011b). Specifically,
the network of Figure 5.0 shows the careers ofviddals that remained mainly in class I-1l across
the ten years of observation.

To simplify the view it was decided to reduce theservation points from monthly to
quarterly. It was reduced by 120 to 31 observatipomts. The labels of the nodes follow the
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encoding presented above, so the node 01 indieatesvent that occurred in the first month of
observation, node 02 indicates an event that oedurr the fourth month. The six positions of the
EGP schema class are identified by the lettere@ftphabet, as follows: (a) I-11, (b) llla, (c) &\;

(d) IVc, (e) Vllab; (f) Vllc. Hence the pattern beten nodes 17a and 18c shows that at least one
actor passes from class I-ll to class IVab betwtbersixty-fourth and sixty-eight month.

Fig.5.0. Time sequence network of cluster (a)ll — |

31c

In effect, to be a graph that represents a groupubjects, mainly immobile, it is rather
intricate. We would have expected a single chaan dhmultiplicity of patterns connected. It is clea
that this type of representation tends to acceateraén the smallest differences, since also just on
person may generate a pattern distinct from oth&rsolution to this problem is to establish a
minimum threshold below which not shown the tiest Example, the graph in Figure 5.1 is the
same as Figure 5.0 except that in the latter ithe@s decided to display only the ties with weights
equal to or greater than three: that is, only thumséerns with which to plot paths for at leasethr
people. It has also been decided to resize thesnadeording to the number of persons passing
through the node.

Fig.5.1. Time sequence network of cluster (a) llwith nodes and ties weighted.

What remains from the previous graph is a mairepattomposed of subjects in class I-Il and
two smaller patterns. The first of these two smpaliterns consists of workers that enter class I-11
after spending at least two years in the urban imgrklass Vllab. The second pattern consists of
workers who, after spending more than half of tieaneers in class I-11, fall in class llla. Althdug
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these patterns are residual, and it is sufficientaise the visualization threshold to six for even
these disappear.

The decision to raise the view threshold is justifby the fact that the pattern has a clear
structure. However, this involves an arbitrary dem to ‘erase’ part of the network. What this
operation involves, and what the consequencessaae, open question. We shall return to this point
later when other examples of application are diseds

6.0 Some measures to facilitate reading of the netwk.

It is clear that the simple display of the patt&gmot enough to provide information with
which to analyze the network fully. In particuléine simple display is not enough to capture the
structure of the relationships between events ilisw@and how it changes over time (along the
graph). For example, it may be useful to highligltdes where the largest number of ties
converges, as in the case of nodes 02b, 02c anith(eigure 4.0. This would show that, in that
interval, there is a simplification of the netwalcomplexity and a local reduction in the system’s
entropy.

It may also be of interest to highlight the nodesf which several ties depart. This would
indicate that actors in the same condition at tinteve taken different paths at time t +1, thus
increasing the network’s entropy. An example is end@dib, from which three distinct patterns
branch out to 05a, 05b and 05c.

Therefore required are specific measures that eansked as attributes of the graph. These
measures are displayed through forms, colours &med ®f the nodes in the network, making it
graphically evident points, areas or sections gfagh that differ from the rest.

Of course, these indices are experimental and durtesting and further development is
required. They are mostly mere stylistic exercided a real and proper definitive measure to be
adopted in the analysis of the network.

In order to illustrate the functioning of these emds, | shall use the network time sequence
obtained as a representation of cluster (a) (BXxiib) and already used (Fig. 5.0) in the previous
section.

A first group of indexes measures the proportibisubjects in each node compared to the
total numbers of subjects.

The first is theNode Probability index (Figure 6.1a), NR ,which measures the proportion of
subjectd that occupy nodeat timet on the total number of subjedtsn the network .

NPi,t :%

The second and the third indexes measure the deviat the observed frequency from that
expected under the hypothesis of equiprobabiliteaéh node. In particular, ti@eneral equal
probability index (Fig. 6.2a) is the natural logarithm of the rdigtween the observed frequencies
f and the average number of expected frequenciesr timel assumption of equiprobability, whére
is the total number of subjects, alds the total number of possible events/distincte®

fit
GEP = In| -~

K

The index takes value 0 when the observed frequandythe expected frequency are equal,
and it assumes positive values if the observedueqy is higher than expected and negative ones
if the observed values are lower than expected. chiogce of the logarithm is determined by the
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need to have comparable quantities both if the matoeis greater and if it is less than the
denominator. Graphically (Fig. 6.2a), the size #ralsign of the index are defined respectively by
the size and shape of the node: The circle shomighk value is positive or zero; the triangle show
that the value is negative. The larger is the gfazbe node, the greater the deviation from 0.

Fig 6.0a Time sequence network pattern of clustel € 1l with nodes weighted by index

Fig 6.1a Node Probability

Fig 6.4a Local equal probability index
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The Local equal probability index (Fig. 6.4a) is very similar to the above. Whatrales is
that, in this case, the equiprobability is localspecifies timet. At each timet, the number of
possible events/nodes can change. For exampléyeirtime sequence network of cluster (a) in
Figure 5.0, at timé; the events/nodes observéd,- 5, are four in number (0la, 01b, Olc, Ole), so
that the average number of expected frequenciethéonode will be (247/4), while in the sixteenth
guarter the events/nodes observiéd- 15, are only two in number (16a, 16b) and the average
number of expected frequencies in this case wi(l24&/2).

LEP,, = In %

K,
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As in the previous case (Fig. 6.4a), the shapes@®lof the node are given by the value and
the sign of the index. The graphs in Figures 6r8h&5a show only the nodes with positive index
values.

The second group of indexes proposed here measheeslensity of the ties of each
event/node. The first is a classic measure of nétwoalysis and is thBegree This index (Fig.
6.3b) simply counts the number of incoming pattekns and outgoing onek;; +1 from each
event/node.

Degree; = ki1 + kiriq
ThelLocal Normalize Degreeindex (Fig. 6.1b) measures the ratio between timeber of ties
that enter and leave no#leat time t divided by the number of possible litkat can enter and exit

nodek; at timet.

kit—1+kiter —2
Ki1+ Kpyq —2

LNDegree;; =

Fig. 6.0b Time sequence network pattern of clugter — Il with nodes weighted by index

Fig. 6.1b Local Normalize Degree Fig. 6.2b Normalilegree

Fig. 6.5b Weighted log degree
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The Normalize Degree(Fig. 6.2b) is a similar index that normalizesdbdegree. This is the
ratio between the number of ties that enter angeleadek; at timet divided by two times the total
number of possible links/nod&s

kit—1+kityr —2
2(K—-1)

NDegree; =

A different way to observe the links of a nodeasompute the ratios between the incoming
and outgoing ties: that is, to measure what happemsd the event/nodgat timet. For example,
knowing that the number of incoming patterns isatgethan outgoing ones may indicate that there
has been a simplification of careers at that pwirtime and a reduction in the system’s entropy.
The first of the two indices isogDegree(Fig. 6.4b), which is given by the natural logamit of the
ratio between the links in the input and output.

ki
LogDegree;, = ln( Lt 1)

ki1

The second index is th@/eighted LogDegreeindex (Fig. 6.5b), and it is the natural
logarithm of the ratio of incoming ties and outgpities multiplied by the average number of
incoming and outgoing ties.

WLD;, = (1 +In (k"'t*)) . <—ki’t‘1 + k"’”l)
' ki1 2

Also in this case, used to display the nodes im#tevork of Figures 6.4b and 6.5b, were the
same graphic devices as adopted in Figures 6.26.3ad

A third group of indexes measure the relationdiepnveen all the links between the active
time t-1 and the timet, and between time and timet +1. In other words, these indices seek to
measure the context in which every event/nodesisrted.

The first index measures the degree of complexitythe system at various points of
observatiort. TheLocal Total Link (Fig. 6.1c) is the total number of incoming andgming ties
at timet.

I I
LTL; = Z kit—1+ Z ki1
i=1 i=1

The second, third and fourth indexes measure thmeplexity at timet. The Relative
indegree-outdegree link(Fig. 6.2c) is the ratio between all the linkstle entry and exit from a
node on all possible links existing at that giviemett.

ki1 +Kira 1
RIO;, = (l—> — (_)
Lt LTL, K,

The third is theRelative indegree link (Fig. 6.3c), which is the ratio between the tieshe
incoming node; at timet divided by all ties observed between titrieandt.

kit—1 > (1)
Rl., = | —2— | —(—
vt (ﬂ:l ki1 K
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The fourth and final index is thRelative outdegree link (Fig. 6.4c), and it is the ratio
between the ties outgoing from nddeat timet divided by all active ties between timand timet

+1.
kiti1 > (1)

RO, =—" | —(—

. <Z§=1ki,t+1 K

Fig. 6.0c Time sequence network pattern of clugtel — Il with nodes weighted by index

Fig. 6.1c Total IN OUT Fig. 6.2c INOUT
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The fourth and final group of indices attempts teasure the cutting point. The potentially
critical situations that take the form of turningimts or critical points in a career: for example,
when different patterns collapse into a single guatevent or, vice versa, when one pattern
fragmented in several patterns.

The first index isCollapse (Fig. 6.1d), which is a ratio of ratios that imwes the ties
incoming to a given node at timet. Its value is given by the ratio between the nunabéncoming
ties and the total of the possible incoming tieBmaét divided by the ratio between all the possible
ties at timet and the maximum number of possible ties. The vafudis index will be higher, the
lower the number of ties observed.

(%) _ <K(ki,t—1 - 1))

Gy

The second index iSintropy (Fig. 6.2d). This is the ratio between the totamber of nodes
and the total number of nodes, at timeninus 1 divided by the total number of nodes mihuThis
index measures the total number of active nodesg@ven moment on the total of the possible
active nodes. The lower the number of events/notlesrved at timg the greater will be the value
of this index.

COll' =
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The last index iDiversity (Fig. 6.3d), which is the inverse of the ratiovie¢n the total
number of links that can be established and the batween the number of links in the outgoing of
all possible ties that could have been observeddsst the timé and timet+1. The index therefore
measures the degree of complexity/entropy outgivorg each node/event.

-1
K

kiti1
Kt-l'l

Divl- =

Fig. 6.0d Time sequence network pattern of clugtel — Il with nodes weighted by index

Fig. 6.1d Collapse
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Fig. 6.2d Syntropy Fig. 6.3d Diversity
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As already mentioned, the indices proposed hereoahg first attempts to measure the
sequence-network. Obviously, they should be exdl@ed developed more systematically. For
example, some of these measures should be takeadnbunt when calculating the weight of the
tie. Account should also be taken of other measaféke nature and contribution of the ties that
precede the event, and others which measure tive structure of the sequence-network. There is
still work to be done on these indices.

7.0 Einstein was right. Time is space.

What has been presented is not the only way inlwhisequence may be displayed as a
network. The newly proposed method is born to thednto preserve the causal structure and the
temporal order of events. Each of these graphstriaca in space of the trajectories followed by a
group of actors who move within the time betweeangs. In fact, actors and events do not move
through space; they do so through time. They are,bgrow up and die over time. Movements
between events occur in time, not in space. Thesitian from one social class to another is not a
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physical move from one place to another; ratheis & change of role (in time). Someway, this

graphs describing the motion of the events andsacteer time.
The problem is what would happen if we decided @ocel time: in other words, if we

decided to eliminate one of the two dimensiondeffirst network.
To understand what can happen, | shall use azaanpe the sequences in Table 4.

Table 4.0. List of six random sequences of lengtles.

id t1 t2 t3 t4 t5 t6 t7
5 a a b b b b b
2 a a a a a b b
4 a a a b b b b
6 a b b b b b b
1 a a a a a a b
3 a a a a b b b

Like the previous ones, also these sequences besitre transition between states. They
describe in particular the transition between sfajeand state (b). Each is different from the the
in at least one element, and this difference caattribduted to a different moment in each of the si
sequences; the transition occurs between two states

Also in this case, the Adjacency Matrix (Table 540 have as many rows and columns as
there are distinct elements in the six sequencgaestion.

Table 5.0 Adjacency matrix of the six random segasrof table 4.0.

0la 02a 02b 03a 03b 04a 04b O5a 05b 06a 06b 07b
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The time sequence network obtained from Tablebdgitainly highly distinctive (Fig.7.0). It
takes the form of two closely related patterns @ljito each other. The direction of the transgion
is entirely from event (a) to event (b).

What differentiates the two patterns is firstlyithéifferent timing. Although both patterns
have the same length of time, they are tempordilftesl. Pattern (a) occurs an instant before
pattern (b), and ends an instant before (b).

The second difference is that, in the course oktiactors that start in (a), with constant
frequency, transit to (b). The result is that tloeles of pattern (b) progressively increase their
weight over time, while the nodes of pattern (agrdase it until its disappearance. Indeed, at the
end of the observed process, all subjects initialigvent (a) have passed to event (b).

The question at this point is how the graph woulldnge if it was decided to cancel the time
dimension. In other words, what would happen ifsigpped considering when — at what moment —
the transition has taken place and focus only @mgé of state?

In the meantime, this would significantly reducee teystem’s complexity. In this new
perspective, our attention is directed only to $hecession of events as they arise from transitions
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between different states within the individual seages. For example, suppose that the intention is
to translate the sequence {aaaabba} into a timeesep network. The distinct nodes of the new

graph would be seven in number (al, a2, a3, ahth|7), as many as the points in time. But if we

cancel the time, and then consider only the tremmstbetween different states, the ‘new sequence’
will be composed of only three nodes (al, b2, aB¢ for each change event.

Fig.7.0. Time sequence network of the six sequeottshle 4.0.

) 06b 07b
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With this passage the one hand we lose the timingvents, but on the other hand we
considerably reduce the complexity of the systesalfit The point now is to ask what this new
object is. What new information emerges from tyiaph? What factors differentiate it from the
time sequence network? What are the limitationsveimat are the risks of its use?

Table 6.0: Adjacency matrix of the six random seqes in Table 4.0.

| 01a 02b
Ola| 0 6
02b| 0 O

Let us return briefly to the sequences in Tableah® build our adjacency matrix (Table 6.0)
considering only the changes between different tsvdn this new definition, this considers the
transitions between events, a square matrix witho@® and columns changes to one with only two
rows and columns.

Fig. 8.0: Event sequence network of the six seqeenctable 4.0.

- -9

24



Also the network is completely different. This newtwork (Fig. 8.0), which, in order to
distinguish it from the previous one | shall céiétevent sequence network, consists simply of two
nodes and one arc. The graph is quite poor andraeseem to provide much information. Yet this
graph is in many ways much more informative thangrevious one.

The easiest way to understand what | mean is tllrde first year of high school. In the
specific when the physics teacher introduced thelae harmonic motion. Probably he/she would
approach the black board and would have drawndeciAfter, he/she went draw a point on the
circumference of the circle and the direction dation of the point along the circle.

Figure 9.0. Simple harmonic motion:

A

Y

\ 4

The teacher, near to the circle, would draw thee&Sa@n axes Y and T. He/she then would
pass to draw on the Cartesian axes the positidheopoint that travels ideally the circumference.
So doing he/she trace a sinusoid or harmonic wawexemplified in Figure 9.0 which is the spatial
representation of the motion of the point in time.

The two graphs are the two sides of the same totnsame phenomenon. The one is space
(motion: the point that travels ideally the circar@nce) and the other is time (the sinusoid). The
former represents the shape of space describ&e aoint in time; the second represents the shape
of time described at the point in space.

| think that the relationship that ties our two égpof graphs with the example of harmonic
motion just presented is now clear. The time segeeametwork is the sine wave. In space it
represents the temporal evolution of the transitioetween events. It is the form that changes over
time. The event sequence network is the points Ithe shape of space. It is the elementary
underlying generative mechanism which producesdogience over time. They are two sides of the
same career. In some ways they are inseparabla@nthelescribes the shape of the space and the
other describes the shape of time. Analyze togetescribes how the space changes over time.

In the case of our last example what are the inddion that we will obtain. With the time
sequence network we have come to the conclusidritbaareer pattern evolves from (a) to (b) so
that it is constant in time. With the event seqeenetwork, we have concluded that the complexity
of the entire graph is produced by a single sing#aerative mechanism which is given by the
transition from (a) to (b). Combining the infornatifrom both graphs, we can draw the conclusion
that pattern (b) is a function of pattern (s).

8.0 Splits Tree: a distance network.

The third type of graph has nothing in common witie previous one. | have decided to
include these graphs in this work for four reasdree first is that this type of graph uses a specia
representation which is based on the grid netwibr;second is that this application was created,
spread and consolidated within the biomedical dis®@s. The third reason is that, among the
analysis techniques based on static networksigliige one which in recent years has undergone the
greatest development as regards both the statistmdeling and the graphic parts. And the fourth
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one is that this technique graphically displays distance matrix obtained through the optimal
matching or similar procedures.

In previous cases, the objects of representatiore wlee individual parts making up the
sequence: they were transitions between eventstareln events in time. These graphical models
treat every single sequence as a whole. Secordly, tteat every single sequence as a particular
node in a lattice. The relationships between timextes are determined by their distance, and the
link between two sequences is the distance betivesn.

The simplest distance used in these models is ¢herishtein distance, where the greater the
number of elements in common between two sequeribesJower will be the distance that
separates the two sequences. However, there ase moasures of distance that can be used to
model the matrix of the sequences in question.

The result, as said, is a network. At the top hesindividual sequences. The lattice describes
the structure of the patterns which lead from aeggusnce to another. The greater the length of the
lattice which must be followed to switch from oregjgence to another, the greater is the number of
elements which do not have the two sequences irmmmExamples of the type of configuration
that these graphs assume and what information mégyumd are given below.

In order to show the diversity of the contributiby these graphs to interpretation, and to
facilitate their first reading, there follow the two networks obtained using ®plits Tree4
program (Huson & Bryant, 2011) which representssiguences in table 1.0 and 4.0.

Fig. 10. A split network representing the diversity of seoeein Table 4.0

0.0+

We start from the sequences in Table 4.0 that $hrimmmediate understanding of the view
obtained with these methods. The graph in FigurésIchain, although it has little to do with a
chain. In fact, this network connects and sortsieeges according to the number of elements in
common. Thus sequences 1 and 2 are close to ebheh lm¢cause they have six of the seven
elements in common. Also sequences 2 and 3 are tlesause they too share six of the seven
elements composing them. Sequences 1 and 3 aredistaet from each other, so much so that we
have to cross two segments (1 to 2 and from 2 to 8)vitch between them. This distance is due to
the fact that sequences 1 and 3 share only fivefoagven elements.

The graph of Table 1.0 is somewhat more compleg.1#i0), but its reading does not
change. One immediately notices the proximity betwthe first two sequences and the distance

° For a discussion of distances see Huson & Bry20it ).
1% For more information on the implementation of theetworks and their interpretation see (Wain-HabSoet al.,
2003; Huson & Bryant 2006).
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between the sequences 6 and 1 or 2. As with thegaie graph (Fig. 10.0), if we compare each of
these three sequences, we find that sequencesZtene only one different element, while 6 has 3
different elements against 1 and 2.

Fig. 11.0 The split network representing the diigrsf sequence in Table 1.0
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The distinctive feature of these graphs is thay ttembine the characteristics of a network
analysis with the capacity for spatial represeatagiven by multidimensional scaling.

The result is great visual and informative impabtere it is not unusual to see very similar
structures emerge in clusters, around which aranizgd the sequences analyzed. Some examples
of real data are given below.

9.0 The careers of men and women

| asked in the introduction a series of questiormmpted by some remarks on the real
capacity of the sequence index plots, and in gédesplay systems, used to capture graphically the
structure of the patterns underlying the sequeanalyzed.

Fig.12.0 Careers that end in class llIb+V-VI+Vlllafier ten years.

Fig.12.1 Women (N=126) Fig.12.2 Men (N=242)

| wondered whether the utility of graphical toolsutd extend beyond simple graphical
display; whether a graphical approach could becanvaluable investigative tool with which to
bring out new ideas on the structure, evolution andposition of the pattern; and whether
adoption of these graphical tools could provideeavmoint of view useful for extending the
hypothesis to be tested with other tools.

27



| tried to answer these questions by proposingagi@ication of network analysis techniques
to sequences, and | suggested three distinct tyfp@sualization. Obviously, what follows is only
experimental in nature and does not claim to peowghing. It is just another piece of information
to test the potential of this approach.

The starting point is the same as in the introductl investigate whether the careers of men
and women who end in the working class after tearg@ef work are similar, as could be inferred
from observation of the sequence index plot.

Following the order of presentation in the visaahlysis, | start with the time sequence
network plot (Fig. 12.1 & 12.2).

In contrast with the sequence index plot, visuapettion of the two graphs reveals evident
differences between the careers of men and women.

The first finding is the different number of tias the two networks, as shown in Table 7.0.
Women have a smaller average number of links tham. mhis suggests that women have a career
structure simpler than that of men. Women lessueetly change from one class position to
another and thus have careers which are simplerlessdcomplex than those of men. Having
careers structure more simple could also mean fdwiing and time shape completely different to
the men. And that is exactly what is observed wdmnparing the networks of women and men.

Tab.7.0. Ties and nodes of the career networksoofien and man who end in the working class
after ten years.

End in class IllIb+V-VI+Vlila

Ties Nodes Cases Mean Mean

Ties Node
Women 283 180 126 1.57 5.81
Men 357 180 242 1.98 5.81
Total 380 181 368 2.10 5.84

The two genders share a common central structangefi by the middle class, the urban petty
bourgeoisie, and the urban working class. Thessetpatterns are closely interrelated and share a
high number of ties, which indicates that most e transitions between classes occur between
these three classes.

What differentiates them is the timing with whidiettransitions occur from one class to
another. The first difference is the different mg$ for men and women who start in class I-11.
Among women, the first transition from I-1l is olvged after three years. Thereafter, the few
remaining transitions into the other classes oetuntervals of years from each other and do not
seem to display some sort of transition pattern.cdldd say that, among women, descending to the
working class after starting in the middle classnse to depend on random factors not related to
time.

For men, the structure of the pattern is differdrite output from class I-Il begins almost
immediately and continues with some frequency agllarity in the first three years of work.
There are no other transitions from the bourgedifli¢o the working class for the next four years.
The outflow, however, resumes with regularity ie fast three years. Unlike women, apparent in
this case is a career pattern with non-random chtenstics. The pattern for men is a career in
which the risk of descending from class I-1l is centrated at the beginning and end of the
observation window. This would suggest that menehavhigh risk of descending early in their
careers where the chances of failure are greaspecally for those men without the means to
respond to contingencies that may occur in theesaryears. There is then a period of relative tquie
in which the risk of falling diminishes substaniyalFinally, before the end of the tenth year of th
career, the risk of falling towards the workingsdatarts to increase.

This is not the only difference between male anddie careers outlined by the network.
Among women, the first transition from IVab is obgsd after three years; among males it begins
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in the first quarter. Also the transitions to anainfi classes IVab, llla, Vllab are significantly reor
frequent among men than among women. Neverthedéhsugh the number of ties is smaller, the
whole process leading to the working class seenfisigh earlier among women. Especially when
we consider class llla and IVab, we note that nodghe transitions from these classes are made
until the eighth year of his career. Thereaftee, iticidence of these classes is almost marginal in
the last two years. Among men, however, there gsrdinuous flow to and from classes until the
last quarter, where by definition all have endethamworking class.

The last feature concerns transitions from thecagtral classes. This pattern is almost non-
existent among women. The first transition is obsdrafter about five years, while the other
transitions follow the random pattern mentionedvabdn contrast, among men there is a dense
network of incomings and outgoings from the urbaarking class. This continuous flow is
observed with the same intensity throughout a dechdbservation.

Although these observations are not conclusivey theve enabled me to raise a series of
issues which if found significant will be testedowtver, it is clear that this first application of
networks to the study of sequences has alreadgieded fair amount of information that, with the
instruments used to date, has remained hidden.id&nke possibility of measure the degree of
complexity of the system by their numbers of linRéth this graphical display we can graphically
analyze the evolution of events, capture theirrtgnand define the time shape in which the patterns
unfold.

This, however, is not the only way that we can olse sequence. A second way is to
observe the transitions between events, therebyrelting the timing of the transitions. Also inghi
case the difference between men and women is dviden

Fig.13.0 Careers that end in class lllb+V-VI+Vlllafier ten years.

Fig.13.1 Women (N=126) Fig.13.2 Men (N=242)

<>

Two main patterns are evident in both networks. Ting pattern describes the direct
transition from classes (a, b, c, d, f) to the arbarking class. The second pattern describes those
who start in the working class, move into the meddlass or the agricultural classes, and then
terminate in the working class.

What differentiates men and women is the diffecognplexity of the network. Women have
a simpler network with a lower number of links. Mover, if we remove the ties from 01b to 02a,
02c, 02f, we obtain two distinct patterns. Thessilts suggest that, among women, there are two
primary underlying generative mechanisms which atgeseparately from each other and combine
to form the two main patterns of class careers bsnen who end up in Vllab after ten years.

The first pattern consists of women who, after engesome class, then move to the urban
working class. The second pattern consists of wowlen start in the working class, pass in the
majority of cases to the white-collar middle cldédls (02b), the urban petty bourgeoisie 1Vab or
into the agricultural working class Vlic and eneithjourney back in the urban working class.

The male patterns are more complex. In this caseimpossible to identify a single central
node that if removed, as in the case of women, ymesl two separate career patterns. It notes a
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significant number of complex patterns with threexmre different classes crossed in the first ten
years of the career by a large proportion of men.

With the third method we again change perspeciifieis far our views have been based on
the decomposition of each sequence into its eleangpiarts. The states and the temporal relations
between states have been combined to form netwankks events. With this procedure, the
sequences have lost their individual identitiesawor of a new collective identity made of career
patterns. With this third method we resume treatroéthe sequences as a whole. The goal is again
to use graphical representations to bring out ptssiommon structures underlying the sequences
observed.

The main issue to resolve has been how to fit tirpgse for which this display system was
created with our needs. In the previous sectiomspkatedly pointed out that this system was
created to display mutations, variations and dfiees, such as, for example, genetic mutations
from a given sequence. The expected input for thyie of representation consists of single
sequences that differ from each other in at leastiem.

The system thus does not handle identical setquiesees. On the other hand, introducing
more identical sequences into the analysis woutdmprove our knowledge about how differences
between sequences are articulated. Eventuallynfbemation on the number of times a sequence is
present could be used to determine what the maersions are, and then distinguish the main
patterns from those that are simply the resultaiflom events.

For this reason, in the example that follows weamtta single copy of each sequence present
in the subset of subjects that end in the workilagsc It is thus clear that the resulting structure
does not take account of the different frequeneigh which the sequences are present in the
sample. All are treated equally, although soméiefrt appear only once and others dozens of times
in the same sample.

Fig.14.0 Careers that end in class llIb+V-VI+Vlllafier ten years.

Fig.14.1 Women (N=923, taxa=99) Fig.14.2 Men (N=G,34xa=184)

2400001
280001

5290001
&780001

3250001

5930001 A4y 3 1150002
050001 0001

240001 gl pli1
5670001 5810001 gibobol 33460 0240003
0820002 5340001 f

g Y000 H
BOBOOOT g qa08 § #'5000001 5500001
5390001 i 5280001

5400 b 1950002
1700001

16830001

1160002
1110001 1720001

1170002

2120001
; 1730001

0834001 2100001
GEatrs 1130002
1750001

In this case, the graphs resemble stars. At thieccare the main sequences, those that have
the largest number of elements in common. The marénove away from the centre, the more it
becomes clear that the sequences are not distlibnieormly around the centre but along the arms
which form the rays of a star. Each ray describgsoap of homogeneous sequences because they
share a larger number of items among them.
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The graph can be conceived as a two-dimensioneg¢septation of a multidimensional space
of two separate analyses conducted on the same&ofttistances between sequences. The first is
show, in this case, by the rays of the star reptesg groups that can be obtained with a cluster
analysis. The second is represented by the ditdreteveen points/sequences of the network. Here
the distances between centres and their arrangenaeatthe result of a projection obtained by
means of a multidimensional scaling of single seqgas.

The results of the two graphs are not obtainedeaslg and quickly as in previous cases. The
number, size and importance of the individual raythe star seem to be greater for men than for
women. This suggests, as also indicated abovethbatareers of men are more complex than those
of women.

Finally, a distinguishing feature seems to distisguhe males among them. | refer to the
group of rays located in the lower quadrant on lgfé This group of sequences is almost
completely detached from the rest of the star.theiowords, there is a group of workers whose
career sequences are totally different from thdsatheer men. It is as, if these group of men had a
behavior totally different from the others in thelility processes.

10.0 Conclusions.

This paper has presented the first results froptiegiion of network analysis to the study of
sequences. It is an introductory work and therenaaay issues that need to be studied and solved.
Nevertheless, a number of insights emerge frometir@sal experiments that promise well for the
future.

First, network analysis seems to be a valuable with which to visualize sequences.
Through graphs can appear career patterns thaeass previously observed. | refer not only to the
differing structures of the careers of men and woifaready known) used as examples and briefly
discussed here. | also refer to the empirical exddeemerging from other analyses of other simple
sequences and reported in the appendix.

Probably is my mind or my eyes to let me see somgtiat does not exist, but, for example,
if we analyze the graph of the cluster (l) (Fig22.0) located in the appendix. The graph at first
sight show itself with a fairly complex networkstture. Yet, if it is look closely, the network heas
clear recursive structure, which starts with onden¢b), splits on tree nodes (e, a, ¢) and back to
one node (b). The structure is so clear to allowoukink that the entire graph can be reduced to a
simple structure with the form (b, eac, b).

This is not the only situation in which simple resiue structures that act as generative
mechanisms underlying sequences are apparent. Xemepées in the Annex have been chosen at
random. The intent was to demonstrate the falljbitif the instrument and its inability to find
structures through the network, but this has nppbaed. Indeed, in many cases, the results were
surprising. Take, for example, the graph of clugggrof Figure (A.22.0) in appendix. This is a
graph composed of a relatively small group of wask@ = 247) yet the structure that emerges is
of disarming simplicity.

Clear are also structures that arise when analygmogips of sequences that share, for
example, the beginning or the end of career instrae class. Examples are the patterns of people
who began their careers in Class I-Il (Figure A00R.02.0; A.03.0; A.10.0 in appendix). Also in
this case, only a few sequences are analyzedhgedimplicity of the structures that emerge from
these trajectories is disarming. Even in the apypbrenore complex pictures, it is sufficient to
exclude those patterns that have a low probalafityccurrence in the very clear images.

For example, consider the graphs in the appendguf€ A.17.0; A.18.0) which describe the
sequences of men and women who have spent ableashonth in the working class. The number
of paths to project is quite large (431 Women, Ki#n) and the two event sequence networks are
sufficiently articulated. At first glance it is tadr difficult to understand whether the careerthege
two groups are the same.
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Fig. 15.0 Event sequence network of workers thaeIspent at least one month in class llib+V-
VI+Vlllab by women and men.

Women Men

By smaller number of ties would seem that womeaears are simpler. These ties are
gathered together around two main trajectories. fiits¢ is the pattern of downward mobility
exhibited by those women who, after entering solags¢ descend to the working class. The second
is the pattern of upward mobility by those womenowbave the working class. In men's careers
seem more complex. Clearly apparent is a pattemnnpafard mobility formed by those men who
began their careers in the working class and thevedhto the other classes.

However, if we exclude those patterns that aresesy fewer than four actors, the graphs
of men and women change dramatically (Fig. 15.0hat¥\emerges in this particular group, which
comprises only those who have spent at least omg¢hniio the working class and who have changed
occupational class at least once in the ten yeatkat there are no substantial differences ieraar
trajectories of class between men and women. Tle rietworks have identical configurations
except for some specific links among men and women.

A sequence takes place in time, and the time seguegtwork has also provided evidence of
the extreme sensitivity of the instrument even isualization of the more marginal patterns. The
complexity of interpretation of certain networkscisrtainly a limit of the method here suggested.
Some examples of these complex networks are piadbe appendix. This may induce researchers
to be discouraged and abandon this approach tdagisg sequences. | think this would be a
mistake.

Obviously, the use of these forms of display reggiimore attention from researchers. They
must learn how to separate the patterns that &ctewlst, even if produced by a small number of
subjects, from the ties produced by the noise fthaa to errors in data collection.

This does not mean that the power of these viewsoigreat as to allow entry into each
individual pattern. We can follow the path andirigerweaving with other patterns. Through the
relationships and transitions from one state tat@rowve can see the timing and time shape of the
career pattern in graphical terms.

Obviously, not all graphs are easy to use. Somesareomplex and intricate that they
resemble more a plate of spaghetti than a netwbrkequences. | believe however, that this
limitation in the ability to read these networkgdads only on our ability to find indices, measures
and selection thresholds with which to bring owd tinderlying coherent structures even in these
cases.

This is not the only limitation of the method preed. Among the others, the one that creates
the greatest methodological problems is the anmilrokindividual sequences. This may not be a
problem if all actors follow the same pattern, botortunately they do not. It may not be a problem
if one decides that the past does not affect thardu but this is equivalent to undermining the
pillars on which sequence analysis is based. Thbl@m is in these graphs we do not know those
who follow who and what. Everything is (con)fusex form a different structure in which the
individual trajectories disappear to make spacefonean’ trajectory that describes the transitions
between two temporally contiguous points.
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Take for example the following sequences: abc, Aba, bbc. The resulting network is shown
in Figure 16.0, where it is impossible to say wlag followed what. What we have here is simply
the sum of the various traces left by each actopirering his/her career.

Fig.16 Time sequence network of sequences: ab¢ ablabbc

Ola 03a

02b

.'Olb 03b

On the one hand, it can be argued that if a sdodtke the one just described were real, it
would prove to have complete randomness in theesems and hence a total lack of common
patterns. On the other hand, we assume that thereralerlying generative mechanisms which
produce shared structures (patterns) that willddewed, even if not perfectly, by all the actors
analyzed. Each actor may differ by a certain amduntthe structure as a whole remains stable.
The patterns in these cases constitute the avefagdividual careers.

What is important in these phases is to not loghtof individual careers and how they
contribute to the realization of the network. A plenmethod which can be used for this purpose is
to use the attributes to define additional inforiraton the nodes. This would (visually) check the
disconnect between the performance obtained wighnittwork and the actual one observed in
individual sequences

There are many things that remain to be done. tetomsider all the potentialities that here
have only briefly mentioned as the biomedical apph@s with phylogenetic networks and splits
trees method. The appendix reports some examplssofype of analysis conducted on the same
set of sequences analyzed above (Figure A.25.G.%.2.27.0; A.28.0).

This article has illustrated a new, network-badeategy with which to represent and analyze
sequences, but this is only one aspect of whatbeadone by combining networks analysis and
sequences analysiBhe real novelty, which is not considered in thepgr for reasons of space and
time, is the transition from static to dynamic.

The real breakthrough will come when we are ablentave from a static to a dynamic
representation of our phenomena; when our pattegm to take life and shape before our eyes.

The progress achieved in recent years by netwoakysis is impressive both in terms of
methodology and in technical terms. Thereesablishedresearch areas aimed to modeling
networks dynamics. The frontier in this field isloager that of representing a structure of refetio
as a whole. The new frontier is representing acsire of relations as a whole which changes over
time and space. But this is exactly what we oueselre trying to do, from another point of view,
with the sequence analysis.

Now required are new tools with which to study andphically model the evolution in time
and space of our patterns. | believe, perhaps Wyorblat this opportunity, for now, will be
provided by adjusting the tools of network analysighe study of sequences. | think, in fact, that
the shift to a network perspective could provideesgch tools more useful for studying sequences.

Finally, | think that when we are able to adoptstheools, the only limitation will be our
imagination, our ability to imagine.

33



Reference:

Abbott, A. (1990) Conceptions of Time and Events in Social Sciendbdds in «Social Science
History», 23, 140-50.

Abbott, A. (1992). From causes to events: Notesamative positivism. Sociological Methods and
Research., 20(4), p.428-455.

Abbott, A. (1995)Sequence analysis: New methods for old idéasual Review of Sociology, 21,
93-113.

Abbott A, Forrest J (1986)Dptimal Matching Methods for Historical Sequencdsurnal of
Interdisciplinary History, 16, 471-494.

Abbott, A. and Hrycak, A. (1990Measuring resemblance in sequence data: An optnaathing
analysis of musiciariscareers American Journal of Sociology, 96(1), 144-185.

Abell, P. (1987)The Syntax of Social Life: The Theory and Methddashparative Narratives
Clarendon Press, New York.

Abell, P. (2004)Narrative explanation: An alternative to variablerdered explanationAnnual
Review of Sociology, 30, p.287-310.

Bateson G.,(1984Mente e NaturaMilano Adelphi. Original titteMind and Nature: A Necessary
Unity (1979)

Barkey, K.,Van Rossen R., (199¥gtworks of contention: Villages and regional strue in the
seventeenth-century Ottoman Emp#enerican Journal of Sociology 102(5). p.1345-1382

Bearman, P. (1993Relations into RhetoricASA Rose Monograph Series. New Brunswick, NJ:
Rutgers University Press.

Bearman P., (2002Narrative NetworksSunbelt International, Sunbelt Social Network feéoence
New Orleans, Louisiana February 13-17, 2002, p.89.

BearmarP.,FarisR., MoodyJ., (1999)Blocking the Future: New Solutions for Old Problems
Historical Social Scienge&ocial Science History, Vol. 23, No. 4, Specialksswhat Is
Social Science History?(Winter, 1999), pp. 501-533

Bearman P., Stovel K., (200Becoming a Nazi: A model for narrative netwoiRsetics 27, 69-90

Bearman P., Moody J., Faris R., (2008gtworks and HistoryCOMP LE X I T, Vol. 8, No.
1, p. 61-71.

Berchtold A, Raftery AE (2002) he Mixture Transition Distribution Model for HigBrder
Markov Chains and Non-Gaussian Time Ser&atistical Science, 17(3), 328-356.

Billari FC. (2001),The Analysis of Early Life Courses: Complex Desims of the Transition to
Adulthood Journal of Population Research, 18(2), 119-124.

Billari FC, Furnkranz J, Prskawetz A (2008)ming, Sequencing, and Quantum of Life Course
Events: A Machine Learning ApproadBuropean Journal of Population, 22(1), 37-65.

Bison 1., (1999)Life-packaging in Italypaper presented at the POLIS Project conferéviar,
Planck Institute for Human Development, Berlin, 1§ March 1999.

Bison 1., (2006)When She Helps Him to the T&@onference on Intergenerational transmissions:
cultural, economic or social resourcé¥228 Spring meeting Nijmegen, 11-14 May, 2006

34



Bison I., (2011a)lLexicographic index: A new measurement of resensblamong sequences
M. Williams and P. Vogt (eds), The SAGE Handbooklwfhovation in Social Research
Methods, London, SAGE, pp. 422-441

Bison 1., (2011b)Education, Social Origins and Career (Im)Mobility Contemporary Italy: A
holistic and categorical approacin EUROPEAN SOCIETIES, v. Volume 13, n. Issue 3, p
481-503

Bison I. Esping-Andesen G., (2000Qjfe-packaging: Dynamics of working career and figmi
formation in Italy Workshop participation of the POLIS project orof&lization, 10-11
March 2000, Madrid, Spain.

Byung-Jun Yoon, Xiaoning Qian, Sayed Mohammad EbreBahraeian,(2012omparative
Analysis of Biological Networks Using Markov Chaamsl Hidden Markov Model$EEE
Signal Processing Magazine, Special Issue on Genana Proteomic Signal Processing in
Biomolecular Pathways, 29(1):22-3#4ttp://www.ece.tamu.edu/~bjyoon/journal/SPM_2011)pd

Borgatti, S.P., (2002)\etDraw Software for Network Visualizatiohnalytic Technologies:
Lexington, KY

Bozek K, Thielen A, Sierra S, Kaiser R, Lengauer(2009),V3 Loop Sequence Space Analysis
Suggests Different Evolutionary Patterns of CCRigt @XCR4-Tropic HIVPLoS ONE
4(10), p. 1-14.

Brudner, L., White D., (1997@lass, property, and structural endogamy: Visualiznetworked
histories Theory and Society 26(2/3), p.161-208.

Brzinsky-Fay, C., Kohler, U., & Luniak, M. (2006%equence analysis with Stata. Stata Journal,
6(4), 435-460.

Chung W, Savell R., Schitt JP., Cybenko G., (20@@ntifying and Tracking Dynamic Processes
in Social NetworksProc. Spie Sensors, and Command, Control, Conuatioins, And
Intelligence (C3i) Technologies For Homeland Sdguknd Homeland Defense, V.

Colizza, V., Flammini, A., Serrano, M. A. & Vespigm, A. (2006) Detecting rich-club ordering in
complex networks. Nat. Phys. 2, 1105.

Dijkstra W, Taris T, (1995Measuring the Agreement between Sequer8msological Methods
and Research, 24(2), 214-231.

Elzinga, C. H. (2003)Sequence Similarity: A Non-Aligning Technig8eciological Methods and
Research 31(4): 3—-29.

Elzinga C.H., Liefbroer A.C., (2007Re-Standardization of Family-Life Trajectories aiung
Adults: A Cross-National Comparison Using SequeXealysis European Journal of
Population, 23, 225-250.

Franzosi R., (20045rom Words to Numbers: Narrative, Data, and So8eilence Cambridge UK,
Cambridge University Press.

Franzosi R, (2010Quantitative Narrative AnalysiQuantitative Applications in the Social
Science, n. 162, Thousand Oaks USA, SAGE Publicakic.

Franzosi R., Mohr J.W. (199Rew Directions in Formalization and Historical Agals, Theory
and SocietyVol. 26(2/3), Special Double Issue on New Direct in Formalization and
Historical Analysis (Apr. - Jun., 1997), pp. 133016

Franzosi R., Bison I, (2010yemporal Order: Sequence Analysis Franzosi RQuantitative
Narrative AnalysisQuantitative Applications in the Social Scient64), Thousand Oaks
USA, SAGE Publication, Inc. pp. 118-123.

35



Gabadinho A, Ritschard G, Studer M, Muller NS, @0Mining Sequence Data in R with the
TraMineR Package: A User's Guideechnical report, Department of Econometrics and
laboratory of Demography, University of Geneva, 8&1) URL
http://mephisto.unige.ch/traminer/.

Gabadinho A, Ritschard G., Muller N.S., Studer 2011,Analyzing and Visualizing State
Sequences in R with TraMineR, Journal of StatisBcdtware 40(4),
http://www.jstatsoft.org/

Gardy J.L., et al., (2011yVhole-Genome Sequencing and Social-Network Anaif/sis
Tuberculosis Outbreakhe New England Journal of medicine, 364:730-9.

Gauthier JA, Widmer E.D., Bucher P., Notredam@@L0), Multichannel Sequence Analysis
Applied to Social Science Data, Sociological Metblody,

Gould, R.V. (1995)Insurgent Identities: Class, Community, and Prote$?aris from 1848 to the
CommungChicago, University of Chicago Press.

Gould, R.V., (1996)Patron-client ties, state centralization, and thaiSkey RebellionAmerican
Journal of Sociology 102(2), p.400-429.

Guimera, R., Sales-Pardo, M. & Amaral, L. A. N.@Z) Classes of complex networks defined by
role-to-role connectivity profiles. Nat. Phys. 3-&9.

Hanneman, R. A., Riddle M., (200%)troduction to social network methqdRiverside, CA:
University of California, Riverside (published irgdal form at
http://faculty.ucr.edu/~hanneman/

Hanneman, R. A., Riddle M., (200%)/orking with Netdraw to visualize graptRiverside, CA:
University of California, Riverside (published irgdal form at
http://faculty.ucr.edu/~hanneman/nettext/C4_netdnaw

Herrnstadt C., Elson J.L., Fahy E., Preston G.nbult D.M., Anderson C., Ghosh S.S., Olefsky
J.M., Beal M.F., Davis R.E., Howell N.,( 200Beduced-Median-Network Analysis of
Complete Mitochondrial DNA Coding-Region Sequemnaethe Major African, Asian, and
European Haplogroupsrhe American Society of Human Genetics, 70:118241

Huson D.H., Bryant D., (2006Qpplication of Phylogenetic Networks in Evolutiop&tudies
Molecular Biology and Evolution, 23(2):254—-267.

Huson D.H., Bryant D., (2011)Jser Manual for SplitsTree4 V4.12&tp://ab.inf.uni-
tuebingen.de/data/software/splitstree4/downloadirabpdf

Kalari KR, Rossell D, Necela BM, Asmann YW, Nair Baheti S, Kachergus JM, Younkin CS,
Baker T, Carr JM, Tang X, Walsh MP, Chai H-S, Syidart SN, Leontovich AA, Hossain
A, Kocher J-P, Perez EA, Reisman DN, Fields AP Bimompson EA, (2012Deep sequence
analysis of non-small cell lung cancer: integratathlysis of gene expression, alternative
splicing, and single nucleotide variations in luagdenocarcinomas with and without
oncogenic KRAS mutatianSrontiers in Oncology | Cancer Genetics. 2:12.

Kuchaiev O., Milenkovic T., Memisevic V., Hayes WRkzulj N., (2010);Topological network
alignment uncovers biological function and phylogeh R. Soc. Interface published online
17 March 201 Ontip://rsit.royalsocietypublishing.org/content/e@@i010/03/24/rsif.2010.0063.full. html#related-url

Martin, P., Schoon, I. and Ross, A. (20@Bgyond Transitions: Applying Optimal Matching
Analysis to Life Course Researdhternational Journal of Social Research Methogy|
11(3), 179-199.

36



ONA survey (2009)NETDRAW — BASIC A Practical Guide to Visualisingi&oNetworks,
Version 1.0http://www?2.optimice.com.au/documents/ONANetdrawdaBasic.pdf

Padgett, J., Ansell C., (1993), Robust action &edise of the Medici, 1400-1434, American
Journal of Sociology 98(6), p.1259-1319.

Pentland B. T., Feldman M. S., (2007), Narrativéweks: Patterns of Technology and
Organization, OrganizationScienc¥éol. 18(5), pp. 781-795.

Ritschard G, Gabadinho A, Muller NS, Studer M (2008ining Event Histories: A Social Science
Perspectivelnternational Journal of Data Mining, Modellingdaanagement, 1(1), 68-90.

Rosenthal, N., Fingrutd M., Ethier M., Karant R.¢®bnald D., (1985)Social movements and
network analysis: A case study of nineteenth-cgnitamen's reform in New York State
American Journal of Sociology, 90 (5): 1022-54.

Scherer S., (2001arly Career Patterns: A Comparison of Great Bntand West Germany
European Sociological Review, 17(2), 119-144.

Srinivasan B.S., Shah N.H., Flannick J. A., AbeliukNovak A.F., Batzoglou S., (200Qurrent
progress in network research: toward reference oeks for key model organispBriefings
in Bioinformatics. Vol. 8. No 5. 318 -332

Stark D., Vedres B., (2002pathways of Property Transformation: EnterpriséWak Careers in
Hungary, 1988-2000Sunbelt International Sunbelt Social Network @wahce New Orleans,
Louisiana February 13-17, 2002 ,p.74)

Wain-Hobson S., Renoux-Elbe C., Vartanian J-Pydvigans A., (2003)\letwork analysis of
human and simian immunodeficiency virus sequertsgeesals massive recombination
resulting in shorter pathwaysournal of General Virology, 84, 885-895

Widmer E, Ritschard G (2009he De-Standardization of the Life Course: Are Med Women
Equal? Advances in Life Course Research, 14(1-2), 28-39.

Wiggins, R.D., Erzberger, C., Hyde, M., Higgs, &d Blane, D. (200 ptimal matching analysis
using ideal types to describe the lifecourse: arsiration of how histories of work,
partnerships and housing relate to quality of lifeearly old age International Journal of
Social Research Methodology, 10(4), 259-278.

37



Appendix



Figure A.01.0. Class careers that begin in clas$l] Total (N=55)

Sequence Index plot

1234567891012348618202232302233323856 3843 1224964856 5535565886 5B8666589077375G

|I borgh iiia Hivab L] wiah|

39




Figure A.02.0. Class careers that begin in cl&s$ll Women. (N=14)

Sequence Index plot
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Figure A.03.0. Class careers that begin in cl&s$ll Men (N=41)

Sequence Index plot
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Figure A.04.0. Time sequence network of class carat begin in class | & Il on total and by

gender.
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Figure A.05.0. Working class careers where at leastmonth has been spent in class | & Il. Total
(N=269)

Sequence Index plot
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Figure A.06.0. Working class careers where at leastmonth has been spent in class | & Il.

Women (N=69)

Sequence Index plot
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Figure A.07.0. Working class careers where at leastmonth has been spent in class | & Il.

(N=200)
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Figure A.08.0. Time sequence network of workingsleareers where at least one month has been

spent in class | & Il by gender and some time nétwmoeasure.
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Figure A.09.0. Class careers that end in dl&s8. Total. (N=184)

Sequence Index plot
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Figure A.10.0. Class careers that end in dl&8B. Women. (N=42)

Sequence Index plot
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Figure A.11.0. Class careers that end in di&B. Men (N=142)

Sequence Index plot
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Figure A.12.0. Time sequence network of workingslaeareers that end in classll.
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Figure A.13.0Working class careers that begin in class lllb+V-VI+Vlla. Total (N=880)

Sequence Index plot
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Figure A.14.0Working class careers that begin in class lllb+V-VI+VIla. Women. (N=288)

Sequence Index plot
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Figure A.15.0Working class careers that begin in class lllb+V-VI+VIla. Men(N=592)

Sequence Index plot
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Figure A.16.0. Working class careers where at leastmonth has been spent in cliégs V-

VI+Vlla. Total (N=1198)

Sequence Index plot
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Figure A.17.0. Working class careers where at leastmonth has been spent in classv-Vi+Vila.
Women(N=413)

Sequence Index plot
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Figure A.18.0. Working class careers where at leastmonth has been spent in cliégs V-
VI+Vlla. Men (N=785)

Sequence Index plot
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Figure A.19.0. Class careers that end in diéssV-VI+Vlla. Total (N=368)

Sequence Index plot
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Figure A.20.0. Class careers that end in didissV-VI+Vila. Women(N=126)

Sequence Index plot
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Figure A.21.0. Class careers that end in didissv-VI+Vila. Men (N=242)

Sequence Index plot
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Figure A.22.0. Immobility pattern I+II: Cluster Bl£€247)

Sequence Index plot
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Figure A.23.0. Upwards mobility patterns: Ilib+V-Wlla—llla & llla—llIb+V-VI+Vlila —llla

(fast); Cluster | (N=229)

Sequence Index plot
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Figure A.24.0. Upwards mobility patterns: IlIb+V-WIlla—llla & llla—llIb+V-VI+Vlla —llla
(slow); Cluster m (157)

Sequence Index plot
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Figure A.25.0.
gender

Phylogenetic network of class cadleat begin in clagk Il. On total and by

Class | & Il Total
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Figure A.26.0. Phylogenetic network of class cez¢leat begin in clagib+V-VI+Vlla. On Total and

by gender

Class lllIb+V-VI+Vlla Total
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Figure A.27.0. Phylogenetic network of class ces¢leat end in cladsk Il. On Total and by gender
Class | & Il Tot
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Figure A.28.0. Phylogenetic network of class cezdleat end in cladfib+V-VI+Vlla. On Total and

by gender

Class llIb+V-VI+Vlla Total
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