
# New Perspectives on Family Formation: What can we learn from Sequence Analysis?

Anette Eva Fasang
Humboldt-University & Social Science Research Center Berlin (WZB)

Silke Aisenbrey Yeshiva University, New York

> LaCosa, Lausanne June, 2012

## Family formation: sequence of relationship and fertility events age 15 to 40



#### Family formation states

- single/no child
- single/1+ child
- married/no child
- married/1 child
- married/2 children
- married/3 children
- married/4 children
- divorced/1+ child
- divorced/no children

# The life course paradigm and family formation – what is the added value of sequence analysis?

- ♦ Macro context: how is family formation structured by macro contexts?
  - → de-standardization/pluralization (e.g. Bras et al 2010, Fasang 2012, Lesnard et al. 2012)
- Multidimensional lives: how does family formation intersect with other life domains such as employment?
  - → Multiple / multichannel sequences (e.g. Pollock 2007, Gauthier et al 2010)
- ♦ Linked lives: how do "linked lives" within families affect family formation?
  - → dyadic sequences (e.g. Liefbroer & Elzinga 2012)

# 4 Subprojects to examine the added value of sequence analysis for the study of family formation

#### 1. Macro Contexts

Social change and family formation: The German Reunification

#### 2. Multidimensional lives

Synchronizing work and family in Germany and the United States (with Silke Aisenbrey, Daniela Grunow)

#### 3. Linked lives

Intergenerational Transmission: Parents' and their children's family formation (with Marcel Raab)

Sibling similarity in family formation (with Jani Erola, Aleksi Karhula, Marcel Raab)

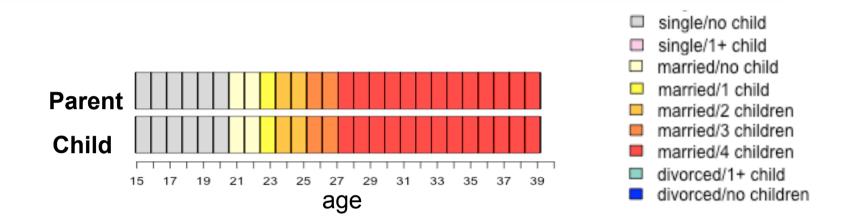
### INTERGENERATIONAL TRANSMISSION: PARENTS' AND THEIR CHILDREN'S FAMILY FORMATION

Anette Eva Fasang and Marcel Raab

### Previous research: Parents' and their children's family formation

- - Marriage (Feng et al. 1999; van Poppel et al. 2008)
  - Fertility (e.g. Barber 2000; Murphy 1999)
  - Divorce (e.g. Amato 1996; Amato and DeBoer 2001; Wolfinger 2011)
- ♦ Sequential perspective shows intergenerational transmission despite dramatic changes in the societal processes that structure family formation (Liefbroer & Elzinga 2012)

### Concepts


#### **♦** Intergenerational transmission

 Children show the same behavior as their parents (e.g. age of first birth, age of marriage).

#### ♦ Intergenerational patterns

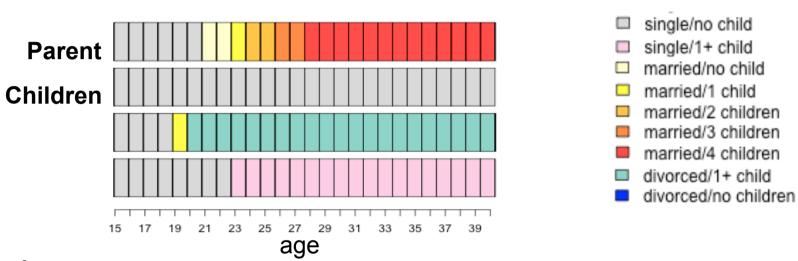
- Regularity in parents' and children's behavioral patterns (family formation process) → "specific parents have specific children".
- Three theoretically reasonable "patterns":
  - **Strong** intergenerational transmission
  - Moderated intergenerational transmission (social change)
  - Contrast pattern
- "Better understanding of the shape of a process can reveal something about its genesis" (Stovel, LACOSA)


### I. Intergenerational pattern: strong transmission "same process at same speed"



#### **Mechanisms**

- ♦ Socialization: children embrace the same values as their parents (e.g. Amato, 1996, Liefbroer & Elzinga 2012, Axinn & Thornton, 1993, 1996).
- ♦ Status inheritance: children are exposed to similar opportunity structures as their parents (e.g., Barber 2000).
- ♦ Genetic inheritance: genetic transmission of fertility patterns (e.g. Kohler, Rodgers, and Christensen, 1999).


# II. Intergenerational pattern: moderated transmission "similar process at different pace"



#### **Mechanisms**

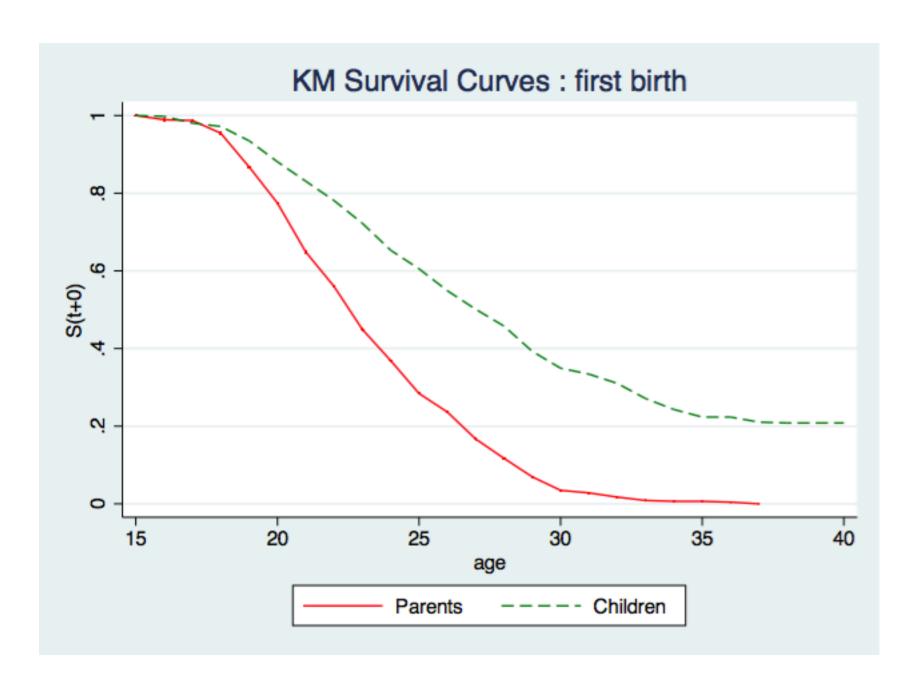
- ♦ Structural change: technological change, economic restructuring, changing gender relations in the labor market (e.g. Esping-Andersen 2009, Blossfeld and Drobnic, 2003).

# III. Intergenerational pattern: contrast pattern "completely different process"

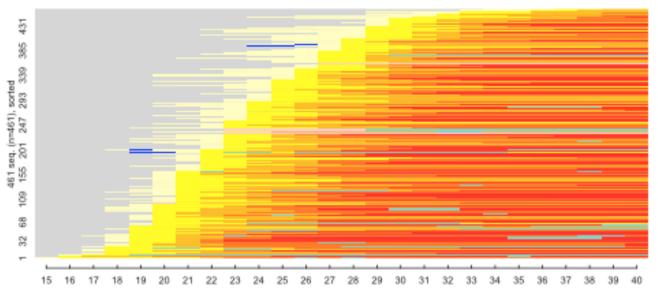


#### **Mechanisms**

- ♦ Intergenerational "struggle": children's need to assert autonomy and draw boundaries to parent generation (e.g. Bengtson and Troll, 1978).
- Family internal dynamics (psychological characteristics):
  - Parent-offspring conflict
  - Marital/spousal conflict
  - Birth-order: pecking-orders within families, later-borns are "rebels" who deviate more from parental role models.

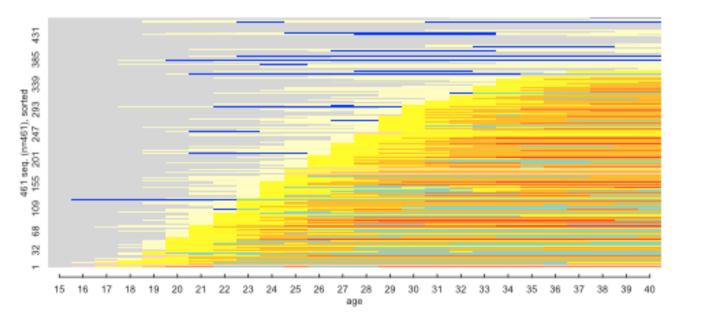

### **Research questions**

Do these patterns exist?


What determines similarity and contrast in parent's and children's family formation?

### **Data**

- ♦ US Longitudinal Study of Generations, 1971-2000
   (PIs: Vern L. Bengtson; Merril Silverstein)
- ♦ 4 Generation Panel
- → Basic sample: grandparents, that where members of a Health Plan in the greater area of Los Angeles (G1); their children (G2) und grandchildren (G3).




#### Parents (N=461 dyads)



## Intergenerational patterns?

#### Children



- ☐ single/no child
- single/1+ child
- married/no child
- married/1 child
- married/2 children
  - married/3 children
  - married/4 children
- divorced/1+ child
- divorced/no children

### Multichannel sequence analysis (Pollock 2007, Gauthier et al. 2010)

- ♦ Originally developed to study parallel sequences, e.g. family & employment
- ♦ Parent and child channel of one dyad (dyad = unite of analysis): [MNC SNC]

Parent [MNC] → married, no child Child [SNC] → single, no child

#### Sequences of two dyads

|               | 20 |   |
|---------------|----|---|
| l3 <b>C</b> 1 |    | K |

"strong transmission"

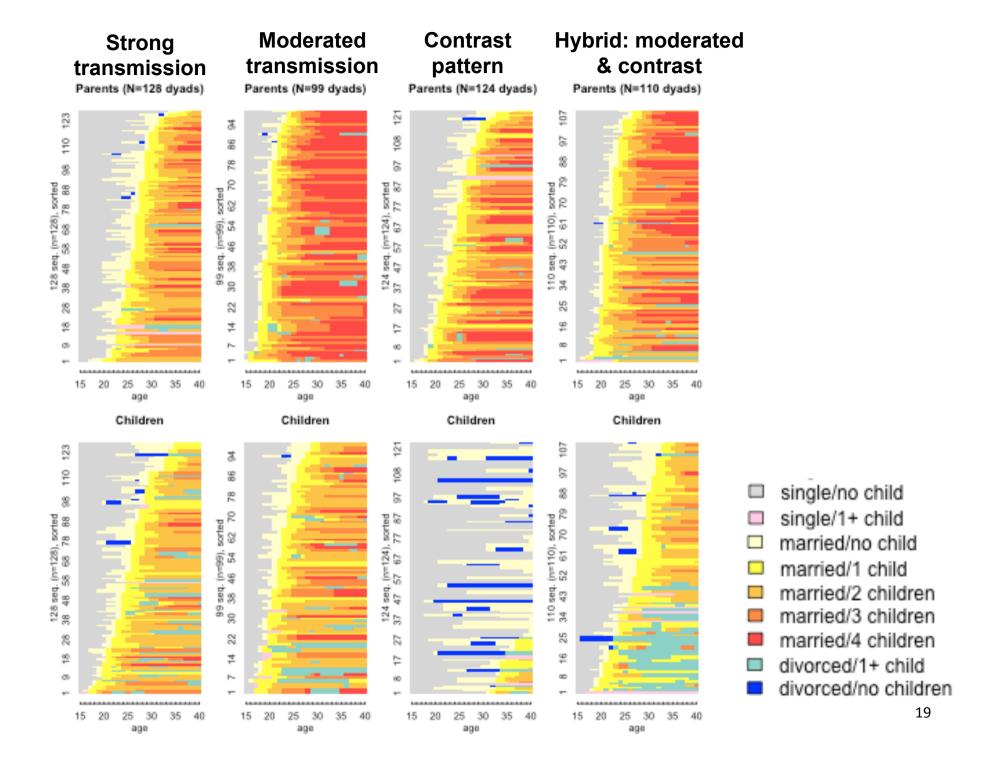
| Age    | 16        | 17        | 18        | 19        | 20        |
|--------|-----------|-----------|-----------|-----------|-----------|
| Dyad A | [MNC MNC] | [M1C M1C] | [M2C M2C] | [M3C M3C] | [M4C M4C] |
| Dyad B | [MNC SNC] | [M1C SNC] | [M2C SNC] | [M3C SNC] | [M4C SNC] |

"contrast pattern"

♦ Multichannel SA aligns both channels separately (parent / child). This enables to find contrasting patterns

# "Cost assignment haunts all optimal matching analysis" (Stovel, 2001)

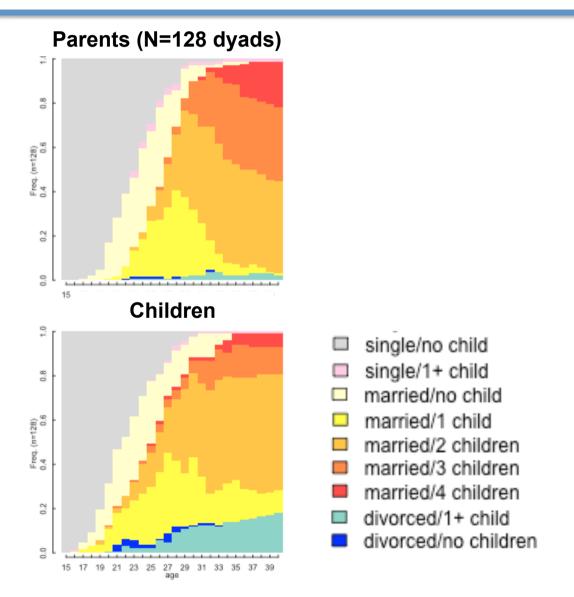
- Assigning numeric values to qualitative states (family formation)
- Substitution costs: substantive, theoretically motivated distance between states
- Weighted by generation-specific transition frequencies between states


| State                   | Code |
|-------------------------|------|
| Single no child (SNC)   | 1    |
| Married no child (MNC)  | 2    |
| Divorced no child (DNC) | 3    |
| Single 1 child (SC)     | 4    |
| Divorced 1 child (DC)   | 5    |
| Married 1 child (M1C)   | 6    |
| Married 2 child (M2C)   | 7    |
| Married 3 child (M3C)   | 8    |
| Married 4 child (M4C)   | 9    |

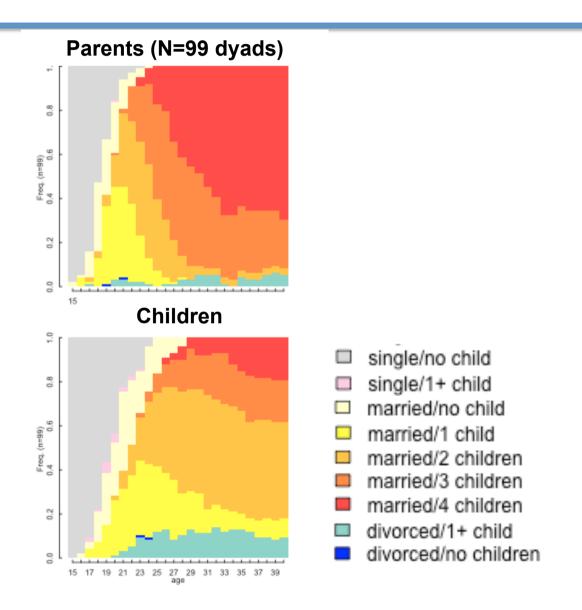
### Theoretical substitution cost matrix

|       | SNC | MNC | DNC | S1C | D1C | M1C | M2C | M3C | M4C |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|       | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
| SNC 1 | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
| MNC 2 | 1   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
| DNC 3 | 2   | 1   | 0   | 1   | 2   | 3   | 4   | 5   | 6   |
| S1C 4 | 3   | 2   | 1   | 0   | 1   | 2   | 3   | 4   | 5   |
| D1C 5 | 4   | 3   | 2   | 1   | 0   | 1   | 2   | 3   | 4   |
| M1C 6 | 5   | 4   | 3   | 2   | 1   | 0   | 1   | 2   | 3   |
| M2C 7 | 6   | 5   | 4   | 3   | 2   | 1   | 0   | 1   | 2   |
| M3C 8 | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | 1   |
| M4C 9 | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |

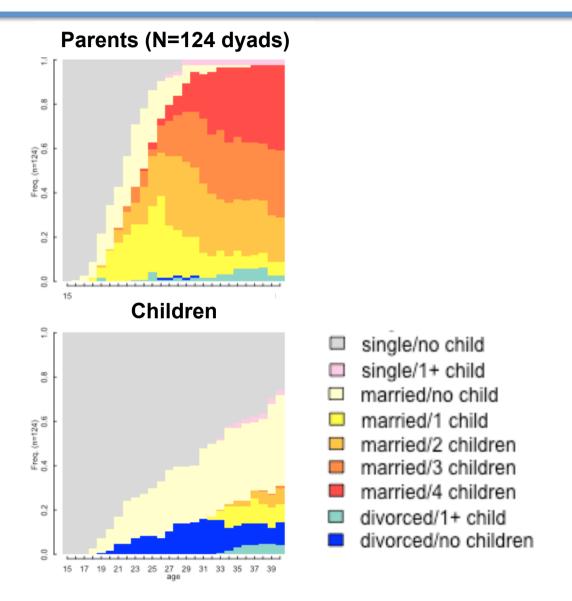
# Research question I: do we find these intergenerational patterns of family formation?


- ♦ Run multichannel sequence analysis to generate pairwise sequence distance matrix.
- ♦ Use sequence distance matrix in cluster analysis (Ward).

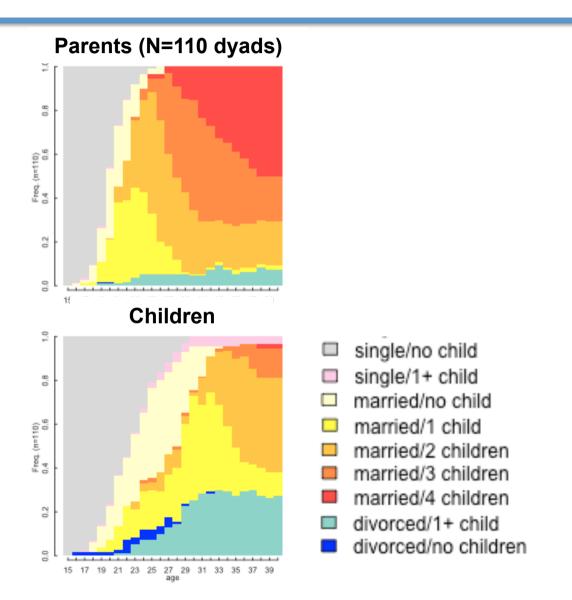



# Mean within and between generation sequence distances

| Cluster                  | Total  | Within      | Within     | Between      |
|--------------------------|--------|-------------|------------|--------------|
|                          |        | parent gen. | child gen. | parent-child |
| Total sample             |        |             |            |              |
| N=461 dyads              | 104.82 | 78.51       | 104.58     | 119.00       |
|                          |        |             |            |              |
| "Strong transmission"    | 66.58  | 55.68       | 74.87      | 68.84        |
| "Moderated transmission" | 71.39  | 47.51       | 68.53      | 85.73        |
|                          | 120.07 | 7664        | 42.02      | 102.24       |
| "Contrast Pattern"       | 120.97 | 76.64       | 42.02      | 183.24       |
| "Moderated & contrast"   | 84.44  | 55.95       | 64.45      | 111.27       |
|                          | -      | -           |            |              |


### **Strong transmission:** same process - same pace

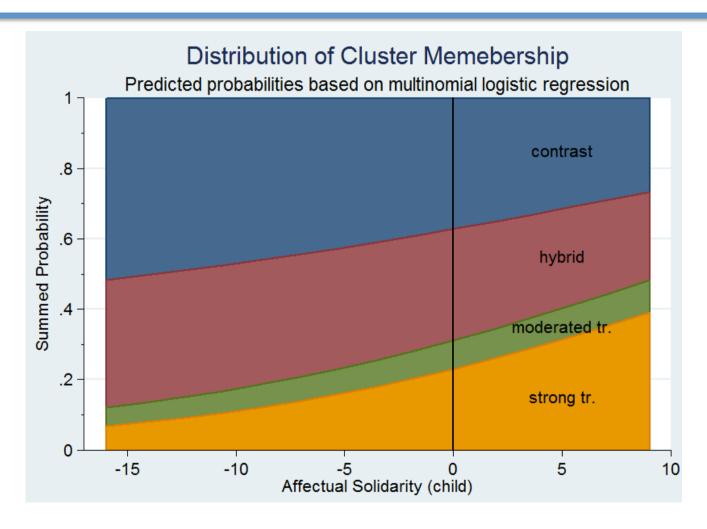



### **Moderated transmission:** same process - different pace



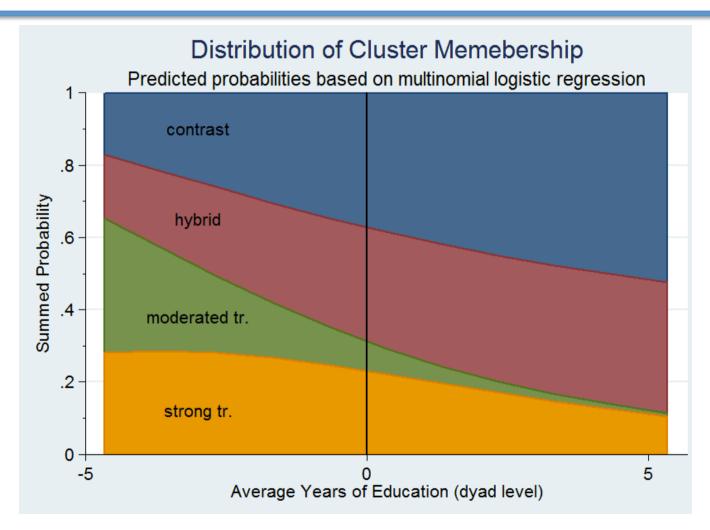
### **Contrast pattern:** different process




### Hybrid: moderated transmission & contrast pattern



# Research question II: determinants of intergenerational patterns & parent-child distance


- ♦ Multinomial logit on cluster membership
- ♦ Dyadic regression on distance between parent and child sequence in each dyad

# Affectual solidarity of child increases probability of strong transmission (multinomial logit)



Controlling for dyad gender, dyad age difference, education, birth order

# High education (dyad level) increases probability of contrast and hybrid pattern



Controlling for dyad gender, dyad age difference, affectual solidarity, birth order

### Dyadic regression on parent and child dissimilarity

|                                              | Model 1   | Model 2   |
|----------------------------------------------|-----------|-----------|
| Gender Constellation (Ref.: Mother-Daughter) |           |           |
| Father-Son                                   | 4.430     | 2.832     |
| Mother-Son                                   | 8.397*    | 7.363     |
| Father-Daughter                              | -2.649    | -4.005    |
| Birth order (Ref.: first born)               |           |           |
| Second born                                  | 7.904**   | 9.076**   |
| Third born                                   | 24.26***  | 25.83***  |
| Fourth+ born                                 | 38.03**   | 44.34**   |
| Parent's age at birth                        | -2.104*** | -2.246*** |
| Years of education – child                   | 1.391*    | 2.566***  |
| Years of education – parent                  | 1.048     | 1.270*    |
| Affectual solidarity (reported by child)     |           | -25.76*** |
| Constant                                     | 64.82***  | 69.22***  |
| Number of dyads                              | 461       | 391       |
| Adjusted R-squared                           | 0.090     | 0.135     |

### **Summary**

- ♦ Support for three intergenerational patterns of family formation (+ hybrid):
  - Strong transmission
  - Moderated transmission (delay, decline)
  - Contrast
- → Patterns of moderated transmission and contrast are drivers of social change in family formation → highly educated parents and children are more likely to experience them.
- → Family internal dynamics/psychological characteristics are important for intergenerational transmission → affectual solidarity of child increases probability of strong transmission.