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Abstract   Sequence analysis is essentially an exploratory tool and needs to be 
complemented with other modelling approaches when it comes to testing hypothe-
ses or studying the dynamics that drives the trajectories. This paper will first ex-
plore some of these tools: event-duration models which lead to event history anal-
ysis; event-sequences models which lead to sequence analysis; multiple level 
models which lead to multilevel analysis; social network models which lead to 
multilevel social-network analysis; models based on individual agents which lead 
to agent-based analysis. It then shows that these models can be classified under 
some more general concepts: the statistical individual concept covers event histo-
ry and sequence analysis; the statistical network concept covers multilevel and so-
cial-network analysis. Only the agent-based analysis seems to escape from these 
concepts as it models theoretical ideas rather than data. However as it remains at 
the individual level it is too reductionist to explain social behavior. It seems then 
necessary to set up a more robust research program for demography. This research 
program may follow the induction’s way given by Bacon in searching for the 
structure of the studied phenomena and the interactions between the networks cre-
ated by people. Such a program will be able to lead to a convergence of these dif-
ferent models. 

1 Introduction 

From it’s inception by Graunt in 1662, the scientific study of population called by 
Petty (1690) political arithmetick, paved the way for around 200 years for demog-
raphy, epidemiology, political economics, and more generally for population sci-
ences. During this period a cross-sectional approach was followed for which so-
cial facts of a period exists independently of the individuals who experience them, 
and can be explained by various characteristics of their society. After the end of 
World War II, population scientists took a new view on these facts, which intro-
duced the individual’s lived time. This cohort analysis approach considered that 
the occurrence of a given event, during the life of a generation or a cohort, can be 
studied in a population which preserves all its characteristics and the same charac-
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teristics for as long as the phenomenon manifests itself (Courgeau, 2007). This 
approach was however submitted to very restrictive conditions (Courgeau and 
Lelièvre, 1994), and leads to the more recent approaches which we will present 
more thoroughly in this paper.  

Social scientists today use various methodological approaches that perform of-
ten complementary but sometimes divergent tasks. We shall first briefly describe 
the main methods used in population science, emphasizing their potential conver-
gences as well as their divergences.  

From this comparison, we shall try to identify the conditions that would allow a 
synthesis of the approaches through an analysis of a more epistemological nature 
regarding an inductive construction in the Baconian sense (1620). This method of 
induction1 consists of discovering the principles of natural or social processes by 
way of experimentation and observation. It rests on the requirement that without 
these principles the properties observed would be different (Franck, 2002). 

2 Research Areas 

We shall present and mainly discuss here the five main approaches by event dura-
tion, event sequence, multiple levels, network and agent-based decisions, used in 
population science. 

2.1 An approach by event duration 

This first approach made its debut in social sciences in the early 1980s, more than 
thirty years after the introduction of longitudinal analysis. However, it was already 
in circulation earlier, particularly among statisticians. We can trace its origin to the 
notion of martingale, used by Ville in 1939 and Doob in 1953. In 1972, Cox pro-
posed the joint use of life tables and a regression model. In 1975, Aalen suggested 
the use of counting process theory for the joint analysis of several events that an 
individual could experience simultaneously. In 1980, the analysis by Aalen et al. 
of the interaction between events in an event history introduced the approach into 
the field of population sciences. 

This approach rests on robust mathematical and statistical foundations, which 
permit to establish risk factors and to treat censored observations. They are pre-
sented in statistical books by Kalbfleisch and Prentice (1980), Cox and Oakes 
(1984), Andersen et al. (1991), and Aalen et al. (2008). They make it possible to 
analyze changes of state, however diverse, and to demonstrate the role of many 
individual characteristics that can change over time during such transitions. The 

                                                 
1 Induction is not taken in the sense of Mill (1843) and his followers, i.e. generalization from par-
ticular facts. In Bacon’s sense, induction designates the complete research process. 
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application of the method in demography (see for example Courgeau and Lelièvre 
1992) brought fresh progress in that field. Many other social sciences adopted it as 
well, including epidemiology, biostatistics, sociology, econometrics, actuarial sci-
ences, and medicine. 

The event-history approach eliminates the need for the overly restrictive hy-
potheses of longitudinal analysis while maintaining the individual point of view. 
Individuals can be tracked over a part of their entire lifetime, typically by means 
of a retrospective or prospective survey. It focuses on the duration between differ-
ent events occurring in a person’s life, and its application requires special surveys. 
For example, in 1981 the “triple event history” survey (currently called 3B, see 
Courgeau, 1999) allowed the simultaneous analysis of family events, occupational 
events, and migration events occurring over a lifetime up to the survey date for 
cohorts born between 1911 and 1936. As censored observations can be treated 
without problem by this approach, the persons who were always in the labor force 
at the time of the survey (four fifths) can be studied for their occupational history 
in the same manner than those who were retired (one fifth). 

It basically relies on semi-parametric methods, which, while preserving a non-
parametric vision of the duration between events, use parameters to describe the 
effects of personal characteristics (Courgeau and Lelièvre, 1992). 

However, the event-history approach did pose a certain number of problems, to 
which we now turn. 

The first problem is that of unobserved heterogeneity. How does unobserved 
heterogeneity affect the estimation of parameters of observed characteristics? To 
help us answer the question, we have an important result obtained by Bretagnole 
and Huber-Carol in 1988 but overlooked by some users of these models. The two 
authors showed that, in a Cox model, when the omitted characteristics are inde-
pendent of the observed characteristics, the omission has no impact on the sign of 
the estimated parameters, reducing only their absolute value. Thus, if the effect of 
a characteristic is found to be fully significant, the introduction of unobserved 
characteristics will merely strengthen that effect. Conversely, a characteristic that 
does not have a significant effect may have one when the omitted characteristics 
are introduced. We need to be aware of this risk. 

When observed and omitted characteristics are connected, the situation is more 
complex. It may be tempting to introduce this heterogeneity as a particular type of 
distribution, which Vaupel et al. called frailty in 1979. When we have information 
on the distribution, its introduction is entirely legitimate. The problem is that we 
typically do not know this distribution, and that it is often chosen for no other val-
id reason than convenience. In such circumstances, some estimates may even 
change the sign of certain parameters, as Trussell and Richards showed in 1987, 
while a model without frailty avoids this problem. 

We therefore totally agree with Aalen et al. (2008), who, in their extensive 
studies on stochastic processes, have tried to identify individual frailty: 

As long as there is no specific information about the underlying process and observations are 
only made once for each individual, there is little hope of identifying what kind of process is 
actually driving the development. 
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Indeed, for the analysis of non-repetitive events, there is only one model without 
observed heterogeneity, but an infinity of models with unobserved heterogeneity. 
Their estimates differ, but they display an identical fit with observed data 
(Trussell, 1992). By contrast, if we are analyzing repetitive events—such as suc-
cessive births or migrations—we have the option of estimating multilevel models 
that allow the introduction of unobserved heterogeneity, which reflects the multi-
ple events experienced by every individual. We shall present these multilevel 
models later. 

The second problem concerns the concept of probability used. Apart from 
Kalbfleisch and Prentice, most of the earlier-mentioned statisticians who devel-
oped the method chose an objective probabilistic approach, which places certain 
constraints on the expected results of an analysis. Could an epistemic approach 
enable us to lift many of these constraints? We cannot give a full description of 
the probabilistic approach here, such as in Courgeau (2012), but we can elaborate 
on the constraints linked to statistical inference. 

The purpose of statistical inference is to optimize the use of the incomplete in-
formation available in order to take the best decision. Statistical inference will 
therefore consist in providing an analysis of a past phenomenon and a prediction 
of a similar phenomenon to come. The first point is important for sciences such as 
demography or epidemiology, which must analyze human behavior. The second 
point is crucial for sciences, such as medicine, or those focusing on public health 
which aim to produce the best possible forecast of the outcome of a treatment 
course or a decision on the best policy to implement. Statistical inference notably 
leads to testing various hypotheses about the phenomena studied. 

Objectivist methods, also called frequentist methods, seek to verify whether a 
given factor does or does not affect the phenomenon studied, and this brings us to 
the notion of statistical test. This means treating the sample under analysis as one 
possible selection from an infinity of other samples that we extract from a popula-
tion also assumed to be infinite. When we assign a confidence interval of, say, 
95% to a parameter estimated on this sample, we might conclude that the probabil-
ity of the unknown parameter lying in the interval is 0.95. In fact, however, the 
objectivists tell us that this conclusion is wrong. All we can state is that if we draw 
an infinity of new samples, then the new estimated parameters will lay in that in-
terval 95% of the time. As Jeffreys wrote in 1939, when examining various defini-
tions of objective probability: 

The most serious drawback of these definitions, however, is the deliberate omission to give 
any meaning to the probability of a hypothesis. All they can do is to set up a hypothesis and 
give arbitrary rules for rejecting it in certain circumstances. 

That is exactly what happens with statistical tests. Similarly, the use of frequentist 
methods for prediction will consist in taking the parameters estimated, for exam-
ple, by means of maximum likelihood and introducing them into the distribution 
function of the new observation. But this will not allow us to factor in the uncer-
tainty of the parameter estimation, and will lead to an under-estimation of the var-
iance of the predicted distribution. 
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That is why Jeffreys himself showed that if we accept that a probability is nev-
er a frequency—in other words, if we adopt the epistemic framework—then a 
95% confidence interval truly means an interval in which the statistician rightly 
believes that the unknown parameter may lie with a probability of 0.95. Moreover, 
this approach enables us to solve the prediction problem, for which the objective 
approach could provide only an approximate solution. All we need to do is calcu-
late the “posterior predictive distribution” of a future observation from the initial-
ly observed data, which are known. What we obtain is not a value, as with the ob-
jectivist method, but a distribution whose variance will now be calculated 
correctly. 

We have not described in detail all the advantages of using an epistemic meth-
od, but they have led a number of authors to propose it for event-history analysis, 
especially when the sample studied is small: see for example the book published 
by Ibrahim et al. in 2001. However we will see in 2.3 that another way of making 
statistical inference is possible with epistemic probability. 

The last problem we would like to address is that of the risk of atomistic fallacy 
involved in this approach. If we can draw on all individual characteristics to ex-
plain a behavior, we shall overlook the context in which the behavior occurs. In 
fact, when using a cross sectional approach the researcher introduced only the 
characteristics of the society to explain social facts. This aggregate approach was 
on the contrary under the risk of ecological fallacy, as Robinson (1950) so clearly 
demonstrated: he showed that the correlations between two characteristics meas-
ured in binary mode on individuals, or by proportions applied to different geo-
graphic segmentations, generally diverged. We will se later how to solve this dif-
ficulty. 

2.2 An approach by event sequences  

We can trace the origin of sequence analysis in computer science as used by Le-
venshtein (1966); then in molecular biology for the study of DNA and RNA se-
quences as used by Levitt (1969). It was introduced later in the social sciences, 
with the work of the sociologist Abbott (1983, 1984) in order to study social pro-
cesses which occur by whole sequences generally during a long period of time. 

However, this approach in social science rests on less robust mathematical and 
statistical foundations than event history analysis. Its main object is to describe 
whole sequences (ordered list of elements) in terms of types that reflect socially 
meaningful trajectories experienced by subjects (individuals or more general enti-
ties like stimuli in psychology or artifacts in archaeology). It follows a two-step 
approach. First it tries to compute a distance between sequences under some oper-
ations (insertions / deletions called “indels” or substitutions) with a given cost for 
each operation. The main used metric is called Optimal Matching (OM), but we 
will see later that many other methods to compute these distances may be used. 
Then in a second step, using cluster analysis, it is possible to detect types of se-
quences, regrouping the whole set of subjects into exclusive and mutually exclu-
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sive categories. Cornwell (2015) gives a more detailed description of these meth-
ods. A great number of social sciences adopted it: sociology, demography, psy-
chology, economics, anthropology, political science, linguistics, etc. 

The sequence approach permits to turn from the cross-sectional research of 
causes in Durkheim’s sense (1895), to an emphasis on contexts, connections and 
events which Abbott (1995) called a quiet revolution in social science. The sur-
veys used to track subjects over their life time are very similar to event history 
surveys, with an emphasis on the observation of whole processes without censor-
ing. Their goals, however, are very different: while event history analysis seeks 
the causes of the studied phenomena, sequential analysis explores the paths fol-
lowed without offering reasons for the underlying processes that generate them 
(Robette and Bry, 2012). So that individual characteristics need not to be recorded 
for this analysis, out of their event sequences and their characteristics before the 
analyzed sequences. For example the 2001 “Event histories and contact circle” 
survey made by Lelièvre, on a sample of cohorts born between 1930 and 1950, 
following the example of the “triple event history” survey but more detailed, per-
mitted to apply sequence analysis to the professional trajectories of mothers and 
their daughters in order to compare them (Robette et al. 2012). 

Contrary to event history relying mainly on semi-parametric methods, it basi-
cally relies on non-parametric methods which make no assumption about the pro-
cess underlying the life course. Its aim is to explore and describe the course of 
events as a whole, without trying to focus on the risk of experiencing events and 
their determinants. There are also some recent Bayesian extensions of social se-
quence analysis (Bolano, 2014), through Hidden Markov models similar to biolog-
ical approaches (Liu and Logvinenko, 2003). 

However, this analysis poses some new problems, different from those posed 
by event-history analysis, to which we now turn. 

The first problem lies in the metric used, particularly in the use of OM methods 
for social sciences. As we have said this approach was imported from information 
theory and molecular biology. For these disciplines the hypotheses lying in their 
foundations have been shown to be plausible and of wide applicability: the model 
proposed by Levitt (1969) for transfer ribonucleic acid confronted with experi-
mental observations was in good agreement with them and theories about chemi-
cal processes give a strong support to these methods. However in social sciences 
the structure of sequences appears to be much more complex. As Wu (2000) said: 

Part of my skepticism stems, in part, from my inability to see how the operations defining dis-
tances between trajectories (replacements and indels) correspond, even roughly, to something 
recognizably social. 

For example giving the same cost to a transition from unemployment to employ-
ment than from employment to unemployment seems highly implausible. This 
skepticism was more clearly demonstrated by Bison (2009), while the use of OM 
techniques has multiplied. He clearly shows, by means of simulations, that varying 
the substitution and indels costs may produce inconsistent results. This may lead 
to find regularities even when they do not exist (Bison, 2014). 
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In order to solve this problem a number of generalizations of OM method were 
proposed: variable substitution costs, different distance measures, spell-adjusted 
measures, non-alignment techniques, monothetic divisive algorithm (MDA), etc. 
See Cornwell (2015) for more detail on these improvements. 

However, while the number of distances and costs measurements increases the 
problem of their comparability becomes more and more important. While compar-
isons exist between few different metrics, using empirical data, the only study 
comparing a large number of metrics, using a reasoned set of artificial sequences, 
was made by Robette and Bry (2012). They did not try to find the best metric but 
“rather to unravel the specific patterns to which each alternative is actually more 
sensitive”. Even if they found some differences between the results of these met-
rics, “the main patterns they conceal will be uncovered by most of the metrics”. 
However the differences exist and the inconsistent results found by Bison let the 
problem of the used metric largely unsolved. 

The second problem lies in the use of cluster analysis for detecting classes of 
sequences. This method of classification was used long before sequence analysis, 
as it was already the title and the subject of a book written by a psychologist 
(Tryon, 1939) for manual calculation. When computers developed, they permitted 
not only an increase in the use of cluster methods but also a development of an in-
creasing number of techniques to detect these groups. Simultaneously a great 
number of problems associated with clustering techniques appeared.  

A paper by Everitt (1979) developed some of them, which we will present here 
shortly. One of the most important criteria for a good cluster solution lies in the 
choice of the number of groups that should exist in a given study. Unfortunately 
when the classification criterion is plotted against the number of groups, in the 
majority of cases, no “sharp step” permits to determine the best number of classes 
which remains entirely subjective. Other attempts to solve this problem let it unre-
solved. The assessment of the validity and stability of the clusters found by differ-
ent techniques poses also problems. As there are many reasons leading different 
analyses to arrive at different sets of clusters, it is important to show the validity of 
such analyses and more importantly the validity of the hypotheses lying behind 
them. Unfortunately there are few validity tests of these different approaches, and 
fewer tests of their social meaning (Cornwell, 2015). We can cite Byrne and Up-
richard recent comment (2012) on these problems: “Although written in the late 
1970s, actually many of the ‘unresolvable problems’ raised in Everitt’s article are 
still problems today”. 

The emphasis on context, connections and events leads sequence analysis to 
abandon regression methods and to consider the research of causes as obsolete. 
This leads to a third problem: “could clusters be an artifact of not controlling, say, 
for an observed variable?” (Wu, 2000). If the problem of unobserved heterogenei-
ty was important for event history analysis, here even observed heterogeneity 
leads to difficulties. While sequence analysis attempts to approach trajectories as a 
whole, it is only possible to introduce characteristics measured before the starting 
of the analyzed trajectory. Introducing characteristics measured later or time de-
pendent ones will lead to many conceptual issues and these characteristics are very 
rarely incorporated. However we will see in the part on synthesis that new at-
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tempts to combine event-history and sequence analysis may permit to solve this 
difficulty (Studer et al., 2016; Rossignon et al., 2016). 

A fourth problem is linked to the fact that sequence analysis cannot handle cen-
sored observations, contrary to event-history analysis: it views its subject of analy-
sis as a single unit at its completion and can only analyze fully observed trajecto-
ries, leaving aside the partially observed ones. Such a limitation will let aside 
incomplete trajectories and will only permit a study of the past. For example, as 
the age at retirement was 65 years at the time of the 3B survey, if we want to make 
a sequence analysis of professional life history, we could only be able to make it 
on people born between 1911 and 1916 only, while the survey covers people born 
between 1911 and 1936. Like the previous problem similar authors are trying to 
circumvent this difficulty, accentuating the similarity between the analyses of 
event duration and event sequences. 

Sequence analysis permits to describe the trajectories in terms of types or clas-
ses which are considered to reflect socially meaningful patterns experienced by 
subjects. However, the meaning of these patterns appears to be not so clear. First 
as one individual is allocated to one and only one type, this leads to a very narrow 
classification, while we know that an individual may in fact be allocated to a great 
number of groups such as family, business firms or organizations, contact circles, 
etc. These groups are real entities while the types given by a sequence analysis 
may be questioned. Second what are the grounds to believe in the existence of 
such types? Abbott and Tsay (2000) argue that sequence methods “would find this 
particular regularity because people in particular friendship networks would turn 
up in grouping of similar fertility careers”. Their argument however presumes that 
data on friendship networks are available simultaneously with data on the fertility 
history of the same people. Unfortunately as far as I know, we have no examples 
showing the congruence of cluster results with friendship networks.  

More recently a number of authors have similarly argued that network analysis 
may be a valuable tool to solve a number of these problems. For example Bison 
(2014) proposes to convert individual sequences into network graphs. Even if this 
method permits “to bring out career patterns that have never previously been ob-
served”, it has important limitations. As he said, the main one  

that creates methodological and philosophical problems is the annulment of individual se-
quences. … Everything is (con)fused to form a different structure in which the individual tra-
jectories disappear to make space for a ‘mean’ trajectory that describes the transitions be-
tween two temporally contiguous points.  

If we want to remain with the fundamental description of sequence analysis given 
previously, this point is really confusing. However Cornwell (2015) goes further 
and devotes a whole chapter on Network methods for sequence analysis. Even if 
some methods used in network analysis may be useful in sequence analysis, it is 
important to say how the object of each approach is different. For sequence analy-
sis as we have already said its main object is to understand a life history as a 
whole and to identify regularities and structures. For network analysis, as we will 
see in 2.4, the main object is to understand the relations between entities (individ-
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uals, or more general levels of collective agency) and to see how changes at each 
level drives the evolution at other levels. We will try to find a solution to this 
problem in the final synthesis in part 3 of this paper. 

We will have to see now how to introduce a more complex approach. 

2.3 From a contextual to a multilevel approach  

While the two preceding analyses operated at a given aggregation level, contextual 
and multilevel analyses introduce the effects of different levels on human behav-
ior. It derived from the hierarchical models used in biometrics and population ge-
netics since the late 1950s (Henderson et al., 1959). Their application and general-
ization to the social sciences came later—in sociology with Mason et al. (1983) 
and in education science with Goldstein (1986).  

The simplest solution for introducing a contextual dimension is to incorporate 
into the same model the individual and aggregate characteristics of the groups in-
volved, as Loriaux showed in 1989. We can now grasp the difference between this 
approach, which uses aggregate characteristics to explain an individual behavior, 
and the aggregate approach, which explained an aggregate behavior by equally 
aggregate characteristics. 

We can thus eliminate the risk of ecological fallacy, for the aggregate charac-
teristic will measure a different construct from its equivalent at the individual lev-
el. It no longer acts as a substitute, but as a characteristic of the sub-population 
that will influence the behavior of a member of that sub-population. Simultaneous-
ly, we remove the atomistic fallacy, as we take into consideration the context in 
which the individual lives. We may ask, however, if the inclusion of the aggregate 
characteristics provides an entirely sufficient representation of that context: as we 
shall see, it will be necessary to take further steps in a fully multilevel analysis. 

In fact, the use of contextual models imposes highly restrictive conditions on 
the formulation of the log-odds (logarithm of relative risks) as a function of char-
acteristics. In particular the models assume that the behaviors of individuals within 
a group are independent of one another. In practice, the risk incurred by a member 
of a given group more likely depends on the risks encountered by the group’s oth-
er members. Overlooking this intra-group dependence generally biases the esti-
mates of the variances of contextual effects, generating excessively narrow confi-
dence intervals. Likewise, these log-odds, for individuals in different groups, 
cannot vary freely but have restrictive constraints imposed by the model used (Lo-
riaux, 1989; Courgeau, 2004). 

In our view, the solution to this double problem lies in multilevel analysis. It 
aims to introduce into a single model different aggregation levels. In addition to 
the individual random parameter, multilevel models include random parameters 
for the groups at different levels identified in the analysis. The basic assumption is 
that these randoms are normally distributed, so that the analysis will focus only on 
their variances and covariances, but may introduce individual or group character-
istics at different levels. 
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Multilevel analysis no longer focuses on the group, as in the analysis on aggre-
gate data, or on the individual, as in the event-history approach. Instead, it incor-
porates the individual into a broader set of levels. It thus resolves the antagonism 
between holism and methodological individualism. As Franck noted in 1995: 

Once we have admitted the metaphysical or metadisciplinary concept of hierarchy, it no long-
er makes sense to choose between holism and atomism, and—as regards the social sciences—
between holism and individualism. 

Figure 1 summarizes the connections between two levels, depending on wheth-
er we study them separately as in event-history and sequential models, or jointly 
as in a multilevel model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Courgeau, 2007 

Figure 1: Connection between different levels 
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but in some cases they can take non-parametric forms, as in multilevel factor 
models (Goldstein, 2003).  

It privileges also the use of the Bayesian paradigm in order to deal appropriate-
ly with nested or clustered data (Draper, 2008). However some other models use 
the frequentist paradigm. As discussed by Greenland (2000) the multilevel ap-
proach permits to unify these two paradigms, leading to empirical Bayes estima-
tion encompassing the two approaches. About such a convergence the interested 
reader may read the recent book by Schweder and Hjort (2016) on statistical infer-
ence for epistemic probability understood as confidence distributions. 

In its turn, the new approach encountered certain problems, which we shall 
now examine. 

The first problem lies in the fact that it frequently uses, as group characteristics, 
mean values of each member’s individual characteristics or even variances or co-
variances. In fact there is a need to know more detailed characteristics of the aims 
and rules prevailing in a group and how to define them in order to explain a col-
lective action. What are the mechanisms of social influence which permit the 
emergence of a collectively owned social capital in different social contexts, 
which “is more than the sum of the various kinds of relationship that we entertain” 
(Adler and Kwon, 2002)? 

The second problem is that “independence among the individuals derives solely 
for common group membership” (Wang et al., 2013). In fact, the groups are gen-
erally more complex. For example a family, generally taken as a simple group, is 
in fact a more complex one where parents and children play very different and 
even conflicting roles. This dissymmetry of roles partly undermines the value of 
the family for multilevel analysis, in which we are looking for what unites group 
members rather than what divides them. Here again, we should take into account 
the interactions between group members and their changes over time in order to 
fully incorporate their social structure. This task will require new observation tools 
and new analytical methods. We will see in 2.4 how a multilevel network ap-
proach permits to avoid this problem. 

The third problem lies on the difficulty to define valid groups and to use exist-
ing geographic or administrative groupings, which have little to do with their in-
habitants’ behaviors. Only the increase of observed existing networks in future 
more detailed surveys, such as those included in the Stanford Large Network Data 
Set Collection, will permit to avoid these unsatisfactory groupings.  

Last, while multilevel analysis enables us to incorporate a number of known 
aggregation levels that constitute a society, it continues to focus only on one of 
these levels—an event, an individual or a group. So that this “approach assumes 
that links between groups are non existent” (Wang et al. 2013). Contrary to this 
idea it is important to take the analysis further by trying to identify the interactions 
that necessarily exist between the various levels. As Robert Franck wrote in 1995: 
“the point now is to determine how the different stages or levels connect, from top 
to bottom and from bottom to top”. We must therefore develop a deeper study of 
the behaviors specific to each level but, above all, we must to try to connect the 
levels together in both directions.  
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We will see now how social networks permit to solve a major part of these 
problems. 

2.4 From a network to a multilevel network approach 

While earlier examples exist, research on social networks effectively began with 
the work of the sociologists Moreno and Jennings in the 1930’s, particularly with 
a paper they wrote in 1938 in which they used the term ‘network theory’ and pro-
posed statistics of social configurations. However almost up to the 1970’s, if re-
search teams in various social sciences worked on network analysis, no integrated 
cumulative effort resulted (Freeman, 2004). During the 1970s and 1980s social 
networks take off as a field, under the development of structural models inspired 
by White et al. (1976) and Freeman (1989), which examine the interdependent re-
lationships between actors and the similar relationships between the positions of 
these actors in the different social networks. 

This approach rests on robust mathematical foundations, which are however 
very different from the previous ones, as the assumption of independence of ob-
servations on individuals no more holds: network analysis argues that units are no 
more acting independently, but influence each other. The use of graph theory and 
matrix analysis is important in this field. These methods are described in detail in 
the book of the sociologists Wasserman and Faust (1994) as well as in the paper 
by the physicist Newman (2003). Many sciences, not only social, adopted this ap-
proach: information science, computer science, management, communication, en-
gineering, economics, psychology, political science, public health, medicine, 
physics, sociology, geography, demography, etc. 

More recently a multilevel network analysis was developed and permitted to 
make the link with multilevel analysis (Lazega and Snijders, 2016). While net-
work theory is generally analyzing one given level, this approach is looking not 
only at the networks existing within different levels but also at the links existing 
between these levels. It leads to important extensions of existing models represent-
ing social structure, with networks as the dependent variable. A first kind of mod-
els tries to “reveal the interdependencies among the micro-, macro-, and meso-
level networks”, the meso level being here “defined between nodes of two adja-
cent models” (Wang et al., 2013). They generalize graph models for multiple-
networks. A second kind of models “accommodate multiple partially exchangea-
ble networks, as well as treatment effects and other covariate effects on network 
structure” (Sweet et al., 2013). They are often called hierarchical network models 
and are a generalization of multilevel models. A third kind of models “is to parti-
tion the units at all levels into groups by taking all available information into ac-
count and determining the ties among these groups” (Žiberna, 2014). It is a gener-
alization of classical blockmodeling developed for single relations. 

As for the multilevel approach, many of these models use Bayesian estimators, 
which have algorithmic advantages particularly for non-nested data structures, and 
Markov Chain Monte Carlo (MCMC) algorithms. As for multilevel models they 
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use simultaneously the frequentist paradigm and this common use may lead to 
more general empirical Bayes estimators (Greenland, 2000). 

This approach requires surveys capable of capturing the different networks 
simultaneously. For example, the demographic survey on networks of relation-
ships (Courgeau, 1972) captured the family, occupational, friendly, and communi-
ty relationships of individuals living in a rural area. A network analysis of this 
survey by Forsé (1979) permitted to construct, from a complete diagram of ac-
quaintance networks, “sociability” groups distinguished by social and demograph-
ic characteristics. Many other examples on more restricted networks include a bi-
omedical research network, an isolated monastery, and so on (White et al., 1976), 
or on large scale networks such as those given in the Stanford Large Network Da-
ta Set Collection containing social, citation, collaboration, internet networks, etc. 
(see their use in Leskovec et al, 2009). 

What new problems will this approach encounter? 
A first problem lies in the surveys or on the existing data collections used in 

order to get the ties between individuals or between levels. They will never be ex-
haustive and, as many possibilities exist for their limitation, this may lead to im-
portant implications for their study. Very often in surveys, only a limited number 
of ties is asked and this number may vary from one survey to the other. There is 
also ambiguity about the qualification of these ties: the term “best friends” may 
have a different signification than “more frequently met” or ‘more trusted” person. 
If a survey may ask for different kind of networks (family, friends, people at work, 
etc.), generally an existing data collection, like people on Facebook, will not per-
mit this distinction. Even some persons may report more connections with popu-
lar, attractive or powerful persons than there are in reality. 

A second problem lies in the fact that network clusters are generally created by 
the researcher rather than pre-existing to him. The way used to create them need 
many decisions that are difficult to pose in an entire scientific way. As Žiberna 
(2014) said: 

In conceptual terms, the main disadvantages are that there are no clear guidelines concerning 
what are the appropriate restrictions for ties between levels and what are appropriate weights 
for different parts of multi-relational networks, that is for level specific one-mode networks 
and for the two-mode networks. 

Even if this citation is more linked to his blockmodeling approach, it is also true 
for a more general multilevel network approach. In every case decisions must be 
made by the researcher how to include or exclude people, merge or divide network 
clusters, etc. But this also permits the statistical analysis when these networks are 
clearly defined. 

A third problem lies in the difficulty to introduce individual or network charac-
teristics in the study of these networks. Only the use of hierarchical network mod-
els permit to introduce them. But, even in this case, there are few data sets which 
give measures of covariate effects on network structure (Sweet et al., 2013). These 
covariates may be individual, network, tie-specific, or a combination of the three. 
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A fourth problem lies in the introduction of time in these studies. Again, very 
few surveys permit to observe the changes occurring to networks through time. 
Some multi-wave surveys give at different times the structure of a network. 
Lazega et al. (2011) used a three wave survey in order to show that the structure of 
an organization remains the same regardless of the turnover of the members. 
However there is a need of more detailed longitudinal observations at multiple 
levels of analysis and of new methods in order to study the organizational mobility 
and relational turnover implied by the introduction if time in multilevel networks. 

We can conclude this examination of the different problems and challenges en-
countered by network and multilevel network analysis, by the conclusion given by 
Lazega and Snijders in their 2016 book: 

Among the most difficult (challenges), we find combining network dynamics and multilevel 
analysis by providing statistical approaches to how changes at each level of collective agency 
drive the evolution of changes at other levels of collective agency. In all these domains, much 
remains to be done. 

So that we can think that these problems are more a challenge for this approach 
than unsolvable ones. 

We will now turn to the last approach presented in this paper. 

2.5 An approach by agent-based decisions 

Individual- or agent-based models2 constitute an approach that differs much more 
from the previous ones. These models are derived from the analyses of simulation 
by the mathematicians Von Neumann and Ulam and the physicist Metropolis 
(1949). The economist Schelling (1971) suggested their use to study segregation 
processes and in 1972 the ecologists Botkin et al. proposed a computer model in 
order to predict the evolution of forest growth. During the 90’s these models 
spread to different social sciences, taking often care not to consider each science 
separately but on the contrary to view them as a whole incorporating all the vari-
ous social processes—demographic, economic, sociological, political, and so on. 
They are now largely used in many domains. 

Rather than modeling specific data, this approach models theoretical ideas and 
is based on computer simulation. Its aim is to understand how the behavior of bio-
logical, social, or more complex systems arises from the characteristics of the in-
dividuals or more general agents making up these systems. As Billari et al. (2003) 
said: 

                                                 
2 In general the ecologists prefer to speak of individual-based models, while the social scientists 
prefer the term agent-based, but the two denominations recover quite the same approach. We will 
use here the denomination of agent-based models usual for the social sciences. 
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Different to the approach of experimental economics and other fields of behavioral science 
that aim to understand why specific rules are applied by humans, agent-based computational 
models pre-suppose rules of behavior and verify whether these micro based rules can explain 
macroscopic regularities. 

So that this approach is bottom-up, with population-level behavior emerging from 
rules of behavior of autonomous individuals. These models are described in a 
number of books, as for example Epstein (2007) in social science or Railsback and 
Grimm (2012) in ecology. Many other natural and social sciences adopted it, in-
cluding physics, ecology, archaeology, demography, sociology, computer science, 
economics, epidemiology, political science, etc. 

This agent-based approach eliminates the need of empirical data on personal or 
social characteristics in order to explain a phenomenon as it is based on simple 
rules of decision followed by individuals, which can explain some real-world phe-
nomenon. As Burch (2003) said: 

A model explains some real-world phenomenon if a) the model is appropriate to the real-
world system …, and b) if the model logically implies the phenomenon, in other words, if the 
phenomenon follows logically from the model as specified to fit a particular part of the real 
world. 

Such a theoretical model cannot be validated in the same way than an empirical 
model, as the four previously presented approaches. About this approach Franck 
(2002) said: “… one has ceased to credit deduction with the power of explaining 
phenomena. Explaining phenomena means discovering principles which are im-
plied by the phenomena.” As it focuses on the mechanisms which drive the action 
of individuals or agents, it will simulate the evolution of such a population from 
simple rules of behavior. So that it may use game theory, complex system theory, 
emergence, evolutionary programming and, in order to introduce randomness, 
Monte Carlo methods. It may also use survey data, not in order to explain the 
studied phenomenon, but only to verify if the parameters used in the simulation 
lead to a similar observed behavior as in the survey. For example Heiland (2003) 
used an agent-based model in order to recover the observed distribution of mi-
grants across different West German states and over a period of 9 years (1989-
1997) from an Eastern state (Sachsen). With few theoretical assumptions about the 
decision to migrate the simulations indicate that heterogeneity in mobility can ex-
plain the observed decline in migration. 

Again these agent-based models raised some new problems. 
The first problem is that these models “are intended to represent the import and 

impact of individual actions on the macro-level patterns observed in a complex 
system” (Courgeau et al., 2016). This implies that an emergent phenomenon at the 
aggregate level can be entirely explained by individual behavior. However Hol-
land (2012) said about agent-based models that they include “little provision for 
agent conglomerates that provide building blocks and behavior at higher level of 
organization”. In fact a study by a multilevel model on the effects of an individual 
characteristic (being farmer) and the corresponding aggregate one (the proportion 
of farmers living in an area) on the probability of internal migration in Norway 
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(Courgeau, 2007) shows that these effects are opposite ones. It seems then diffi-
cult to explain a macro-characteristic acting positively by a micro-characteristic 
acting negatively. Indeed, micro-level rules find hardly a link with aggregate-level 
rules, and I think that aggregate-level rules cannot be modeled with a micro-
approach, since they transcend the behaviors of the component agents.  

A second problem is that this approach is mainly bottom-up. As we have al-
ready previously seen for multilevel network models it is important to consider 
simultaneously a top-down process from higher-level properties to lower-level en-
tities. More precisely we will have to speak about a Micro-Macro link which “is 
the loop process by which behaviour at the individual level generates higher-level 
structures (bottom-up process), which feedback the lower level (top-down), some-
times reinforcing the producing either directly or indirectly” (Conte et al., 2012). 
The bottom-up approach of agent-based models is unable to take into account such 
a Micro-Macro link. 

A third problem lies on the validation of a given agent-based model. Such an 
approach is an attempt for imitation of human behavior using some well chosen 
generative mechanisms to produce it. It may be judged as successful when it leads 
to a correct reproduction of the structural characteristics of this behavior. The way 
to ascertain this judgment is however very far from usual tests used to verify the 
validity of the effects of different characteristics in the previous approaches. Such 
a test which can be made in natural science is less evident in social science. As 
Küppers and Lenhard (2005) said: 

The essential point is that (often) in the natural sciences one has a general theory about the 
objects and simulation models are used as instruments to generate data and to make predic-
tions about the behaviour of these objects. On the other side, agent-based models are instru-
ments to explore the theoretical structure of the data. 

In order to see if such an exploration had been successful, we need to consider dif-
ferent aspects. First, how to test that there are no other models able to explain bet-
ter the observed phenomenon? Often the researcher tries different kind of models 
in order to permit to choose the one which give the better accord with empirical 
data. But this does not solve the problem, as there is an infinity of models which 
may predict the same empirical result as well or better. The agent-based approach 
gives no way to avoid this problem. Second, how to test that the chosen model 
gives a good fit to the observed data? Unfortunately, there are no clearly defined 
procedures for testing the fit of the simulation models, like goodness of fit proce-
dures or tests of significance for the previous approaches. We can conclude that 
there are no clear verification and validation procedures for agent-based models in 
population science. 

In consequence we will have to see in the next section how to try to overcome 
these problems, as well as those encountered with the four previous approaches. 
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3. Towards a synthesis 

As we have already presented and criticized five different main approaches used 
nowadays in social sciences, we will have now to see if we can give a more syn-
thetic view of them. 

Let us first consider the two main concepts without which no population sci-
ence would be possible. 

The first one is the creation of an abstract fictious individual, whom we can call 
a statistical individual as distinct from an observed individual. As Aristotle (330 
BC) said: “individual cases are so infinitely various that no systematic knowledge 
of them is possible”, Graunt (1662) was the first to introduce the possibility of a 
population science letting aside the observed individual and using statistics on a 
few number of characteristics, leading to a statistical individual. As Courgeau 
wrote in 2012: 

Under this scenario, two observed individuals, with identical characteristics, will certainly 
have different chances of experiencing a given event, for they will have an infinity of other 
characteristics that can influence the outcome. By contrast, two statistical individuals, seen as 
units of a repeated random draw, subjected to the same sampling conditions and possessing 
the same characteristics, will have the same probability of experiencing the event. 

The essential assumption permitting to use the theory of probability in this case is 
that of exchangeability3 (de Finetti, 1937): n trials will be said to be exchangeable 
if the joint probability distribution is invariant for all permutations of the n units. 
We will use it here for the residuals given the explanatory characteristics meas-
ured on these individuals. 

The second concept is the notion of a statistical network, different from the ob-
served ones: it appeared more recently, for example with the work of Coleman in 
1958. While observed networks may be as diverse as the infinite kind of ties exist-
ing between observed individuals, statistical networks may be more precisely de-
fined with the use of statistics on ties and the choice of criteria to circumscribe 
them. Again the essential assumption permitting the use of the theory of probabil-
ity is that, given the explanatory characteristics introduced at each level, the resid-
uals are assumed to be exchangeable. 

It is interesting here to compare these two concepts with the contexts proposed 
by Billari (2015) to explain population change: the micro- and the macro-level 
contexts. In fact he clearly recognized at the basis of micro-level context the ab-
stract concept of statistical individual, the same that we propose here. However 
for macro-level context he only proposes to see how “population patterns re-
emerge from action and interaction of individuals”, without recognizing the ab-
stract concept at the basis of this interaction: the statistical network, which permits 
to flesh out this macro-analysis. For example we have already seen how multilevel 
analysis permits to reconcile the macro- and micro-level results.  

                                                 
3 In this first paper on this topic de Finetti called it equivalence. 
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Once these two main concepts defined, we can see that the study of event dura-
tion and the study of event sequences are directly connected to the same concept 
of statistical individual. Even if their approach of this individual is different, as we 
have already seen, they can be considered as two complementary ways to study 
him. In addition some more recent papers, as those presented in this conference by 
Studer et al. (2016) or Rossignon et al. (2016), combines the advantages of the 
two approaches modeling “the relationships between time varying covariates and 
trajectories specified as processes outcomes that unfold over time”. The definition 
given by Courgeau and Lelièvre (1997) of event history analysis appears to be al-
so valid for sequence analysis: “Throughout his or her life an individual follows a 
complex itinerary, which at a given moment depends on the life course to date and 
on the information acquired in the past”. The itinerary is followed event after 
event, in the first analysis, and with more complex sequences of events in the sec-
ond one. 

Similarly we can see that the contextual, multilevel and network multilevel ap-
proaches are simultaneously connected to the same concept of statistical network. 
They appear as complementary in its study. We can say that contextual and multi-
level analysis focuses on attributes while network multilevel analysis focuses on 
relations, combining the different levels.  

It may also be interesting to see that contextual and multilevel analysis may be 
seen as complementary of event history analysis, introducing the effects of net-
work membership on individual behavior. Similarly network multilevel analysis 
may also be seen as complementary to sequence analysis. This proximity may ex-
plain why Cornwell (2015) tries to introduce network methods in sequence analy-
sis: however sequence methods remain at the statistical individual level, while 
multilevel networks methods introduce statistical networks. 

The different problems encountered when using one of these four approaches 
may largely disappear when considering simultaneously the statistical individual 
and the statistical network under a more general biographical multilevel network 
analysis. As we already said such an approach is able to avoid the risks of atomis-
tic or of ecological fallacy through the use of a synthesis of holism and individual-
ism. It may also avoid the problems linked to the choice between Bayesian or fre-
quentist probability through the use of a more general compromise on confidence 
distributions (Schweder and Hjort, 2016), which opens to a better statistical infer-
ence. It permits to answer to some problems posed by unobserved heterogeneity, 
while introducing networks which permit to have a better understanding of human 
behavior. We can also think that a number of problems encountered by sequence 
analysis (metric used, cluster analysis and artifacts) may be solved by undertaking 
more complex surveys on social networks, which may permit to replace theoreti-
cal clusters by real networks of individuals linked together by existing social forc-
es. Similarly the main problems encountered by multilevel analysis may largely be 
solved by multilevel network analysis, such as: the use of a Multilevel Social In-
fluence (MSI) model (Agneessens and Koskinen, 2016) to explain the emergence 
of a social capital; the use of Exponential Random Graph Models (ERGM) to 
show that within-level network structure are interdependent with network struc-
tures of other levels (Wang et al., 2016); etc. Last we think that the problems re-
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cently posed by multilevel network analysis are more a challenge for future re-
search in this field, than unsolvable problems. For example such an analysis will 
reach its full potential when longitudinal observations at multiple levels of analy-
sis will be available, by providing a combination of an event history of networks 
with a multilevel analysis (Lazega and Snijders, 2016). 

The situation is more complex for agent-based approach. While it apparently 
resembles event-history approach in its focus on individual behavior alone, it 
seeks however to explain collective behavior with the aid of individual behavior. 
This gives it some affinity with the multilevel network approach. The main ques-
tion is: how to generate the macroscopic regularity from the bottom-up, using 
simple local rules? The difficulties encountered with such an approach are clearly 
described in Conte et al. (2012): 

First, how to find out the simple local rules? How to avoid ad hoc and arbitrary explanations? 
As already observed4, one criterion has often been used, i.e., choose the conditions that are 
sufficient to generate a given effect. However, this leads to a great deal of alternative options, 
all of which are to some extent arbitrary. 

As we have already shown, in social science we cannot obtain the macro-level pat-
terns by simply aggregating the micro-level outcomes, so that local rules are not 
sufficient to explain a complex social behavior. It is then necessary to introduce 
theories of decision making to get more valuable models: however the number of 
options for modeling decision making is almost infinite (Klabunde and Willekens, 
2016). As the choice of a decision theory is driven by the researcher background, 
an economist, a demographer, a geographer, a psychologist, etc., may reach quite 
different results for the same studied phenomenon. 
In our view, further work is needed to go over these contradictions and place 
agent-based analysis in a broader setting and a more explicit theory-founded mod-
el. 

4 Conclusion 

By restricting ourselves to defining a scientific method solely by its methods, 
we condemn ourselves to taking a partial view of the core scientific approach. We 
need to set up a more robust research program for demography and, more general-
ly, the social sciences—a program that converges with the now well established 
program of the physical and biological sciences. The source for this program lies 
in Bacon’s work (1620): 

There are and can be only two ways of searching into and discovering truth. The one flies 
from the senses and particulars to the most general axioms, and from these principles, the 
truth of which it takes for settled and immovable, proceeds to judgment and to the discovery 

                                                 
4 See Conte (2009) p. 29. 
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of middle axioms. And this way is now in fashion. The other derives from the senses and par-
ticulars, rising by a gradual and unbroken ascent, so that it arrives at the most general axioms 
last of all. This is the true way, but as yet untried. 

Bacon calls the second approach induction, not in the meaning later given to the 
term by the empiricist tradition of Hume and Popper—i.e., the generalization of 
observations—but in the sense of the search for the structure of observed phenom-
ena. That is how Galileo, Newton, Graunt, Einstein, Darwin, and others developed 
their approach to the study of phenomena—whether physical or social. 

It is important for the social sciences to start with the observation and meas-
urement of facts, for this measurement, far from being secondary, makes it possi-
ble to assess the “potentialities” of a social fact (Courgeau, 2013). Next, instead of 
relying on often arbitrary hypotheses, like in agent-based models, the modeling of 
observed phenomena should follow the method recommended by Bacon by ana-
lyzing the interactions between the networks created by people and seeking their 
structure (Franck, 2002; Courgeau et al., 2016). 

Even if one can think that each individual has an unlimited and unknowable 
number of characteristics with his own freedom of choice, social science has to 
see that he is born in a given society with its rules and laws, which restrain his 
freedom, that he is submitted to biological laws, which are the same for all hu-
mans. So that a social science can exist which takes into account only a limited 
number of characters and which is based on a number of concepts without which 
the properties of these characters would be inconceivable or impossible (Franck, 
2002).  

A final point: We have often viewed the social sciences here as a whole to 
which certain approaches applied and not others. We must now consider that it is 
not by erasing the boundaries between disciplines that we can improve our 
knowledge (Franck, 1999). The boundaries are real, for each discipline endeavors 
to analyze different properties of human societies. However, we think that it is 
possible to construct a new formal object that can explain certain properties of 
human societies—an object that encompasses existing disciplines and allows their 
synthesis. 
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