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Abstract

This paper proposes string kernels that can be easily modified to handle a va-
riety of subsequence-based features. Slight adaptations of the basic algorithm
allow for weighing subsequence lengths, restricting or soft-penalizing gap-
size, character-weighing and soft-matching of characters. An easy extension
of the kernels allows for comparing run-length encoded strings with a time-
complexity that is independent of the length of the original, uncompressed
strings. Such kernels have applications in image processing, computational
biology, demography and in comparing partial rankings.
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1. Introduction

In many branches of science and engineering, data come as strings of
characters from a finite alphabet, the characters standing for states, events
or objects and the order of the characters corresponding to the order of states
or events in time or the order of objects in space. An example of such a time
series is a labor market career with states like “employed” and “retired”, an
example of a sequence in space is a strand of DNA where the objects are
nucleobases and another example is a consumer’s ranking of different brands
of lipsticks. Analyzing such data requires sensible classification of the strings
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and thus we need algorithms to efficiently gauge similarity and distance be-
tween the strings. Classical methods of string matching have been amply
described in very readable books like [17, 35, 41]. String kernels were first
introduced by [42, 18] and a first, thorough applications of the concepts was
developed in [30] for text classification and in [28] for protein classification.
Since then, string kernels have been used in quite different sciences: in the
social sciences to study life courses and labor market careers [5, 6, 10], in
meteorology to study wind patterns [33], in biology to study animal behav-
ioral patterns [26], in decision making to analyze concordance [13] and in
computational biology, for example, to recognize splice sites in eukaryotes[4].
The spectrum kernels, using the concept of substrings, as introduced by
Christina Leslie and her collaborators [28] comprise a quite natural way to
compare strings when contiguity of the symbols is important as it is, for
example in analyzing proteins. The kernel introduced by Huma Lodhi [30]
compares strings by a weighted count of their (possibly noncontiguous) sub-
sequences, penalizing the gaps in the embeddings of subsequences. Lodhi’s
kernel and its variants were amply discussed in [37, see Chapter 11]. Driven
by applications in the social sciences, [10, 11] proposed a more efficient sub-
sequence based string kernel and [39, 40] also proposed kernels to count all
common subsequences.
Driven by problems in social demography [19, 38] and in comparing partial
rankings [1, 2, 14], this paper discusses extensions of the subsequence ker-
nel proposed in [10, 12, Theorem 7]. We will discuss extensions that weigh
subsequences according to their length, according to the characters included
and the gaps spanned, discuss soft matching and we will address the prob-
lem that is known in computational biology as the problem of “run lengths”
[8, 15] and in social demography as the problem of “duration” of states.
To set the stage, we will first, in the next section, deal with some concepts
and notation pertaining to subsequences and their feature vectors and dis-
cuss the basic version of the kernel in Section 3. In Section 4, we discuss
differential weighing of the characters appearing in the subsequences. Sec-
tion 5 deals with weighing subsequence length and restricting gap-sizes. In
Section 6, we concisely deal with another kernel, the Trail-algorithm, that is
particularly suitable for soft gap-penalizing in the context where repetitions
of characters are few or even absent, like for example in comparing (partial)
rankings. In Section 7, we discuss soft-matching through using an elliptical
inner-product. In Section 8, we discuss an extension of the Grid-algorithm
that very efficiently compares run-length encoded (RLE) strings: indepen-
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dently from the lengths of the original, uncompressed strings. Finally, in
Section 9, we summarize and conclude.

2. Preliminaries

Throughout this paper, we will use the notation [n] to denote the first n
natural numbers {1, . . . , n}. Let Σ = {σ1, . . . , σn} denote a set, also called an
alphabet, of n characters. A string over Σ is a sequence x = x1x2 . . . xn that
arises by concatenation of characters from the alphabet: xi ∈ Σ for i ∈ [n].
We let Σ∗ denote the set of finite strings that are constructed from the char-
acters of Σ by concatenation. We say that a string x = x1 . . . xn has length
|x| = n or that x is n-long if it consists of n, not necessarily distinct, charac-
ters from Σ. The empty string or empty sequence, which has a length of zero
is denoted by λ. The set Σn denotes the set of all n-long strings over Σ. If
a string x is n-long, it has n nonempty prefixes xi = x1 . . . xi (in particular,
xn = x), and the empty prefix x0 = λ.
A k-long string y = y1 . . . yk is a subsequence of x if there exist k + 1, not
necessarily distinct and possibly empty, strings v1, . . . , vk+1 ∈ Σ� such that
v1y1 . . . vkykvk+1 = x and we write y � x to denote this fact. The set of all
subsequences of x is denoted by S(x).
Let u � x with u = xj1 . . . xj|u| . Then the gaps of u in x are defined as
gm(u|x) = jm− jm−1−1 for m ∈ [|u|−1]. Hence, as is intuitive, gj(x|x) = 0.
The width w(u|x) of u in x is defined as j|u| − j1 + 1 and w(x|x) = |x|.
If u � x and u � y, we write u � (x, y) and we say that u is a common
subsequence of x and y and we will write S(x, y) to denote the set of all
common subsequences of x and y with φ(x, y) = |S(x, y)|.
Whenever we want to confine the length of the (common) subsequences to
some k ≥ 0, we use the symbols Sk and φk. So, for example, Sk(x, y) de-
notes the set of all common k-long subsequences of x and y and there exist
φk(x, y) = |S(x, y)| of such subsequences.
Let u = u1 . . . u|u| � x. Then the integer sequence ix(u) = i1, . . . , i|u| is called
an embedding of u in x, precisely when xi1 . . . xi|u| = u. Some subsequences
may be embedded more than once in a string; for example u = ac is embed-
ded twice in x = abac. We denote the number of embeddings of u � x as
|x|u; so, |x|ac = 2.
In the sections to come, we will discuss kernels to evaluate inner products
of feature vectors x = (x1, x2, . . .) that represent strings x = x1x2 . . . xn.
Such vectors can be constructed through an arbitrary but fixed mapping
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r : x ∈ Σ� → r(x) ∈ Z
+ of all finite strings to the nonnegative integers and

then defining the coordinates xi of the vector x = (x1, x2, . . .) through

xr(u) =

⎧⎨
⎩

f(u, x) if u � x

0 otherwise
(1)

wherein f(u, x) maps into some number-field.

3. The basic Grid-algorithm

In this section, we deal with the most simple form of the kernel as first
proposed in [10], evaluating the inner product x′y of vectors constructed
according to

xr(u) =

⎧⎨
⎩
|x|u if u � x

0 otherwise
. (2)

Hence, the inner product adds products of the form |x|u · |y|u, i.e. the number
of times that an embedding of u in the one string matches to an embedding
of u in the other string. So, we say that x′y counts the number of matching
embeddings or, equivalently, the number of matching subsequences. Further-
more, we discuss some of its properties and algorithmic details. Before we
formally present the algorithm, we illustrate its principles through a simple
example. Thus, writing μ(x, y) for the total number of matching embeddings
of x and y, we have that x′y = μ(x, y) and we write μk(x, y) to denote the
number of matching k-long embeddings.
Fig. 1 shows two grids, each representing a different stage of the algorithm
applied to the strings x = abac and y = bacb, constructed from Σ = {a, b, c}.
In both grids, common subsequences are represented by (sequences of) ar-
rows. In the left grid, only the common 1-tuples are shown, hence the arrows
point to the node from which they departed, the nodes themselves represent-
ing the fact that xi = yj. In the right grid, the arrows point to all nodes
that are to the South-East relative to the nodes from which they departed,
hence the arrows represent all common 2-tuples. The common 3-tuples arise
by combining two arrows with one common node. We constructed M1 ac-
cording to the rule m1

ij = 1 iff xi = yj and e1ij = 0 otherwise. Then we keep
track of the number of k-long South-East going paths that depart from each
node by adding the numbers South-East of each non-zero cell in Mk−1 and
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storing these results in the corresponding cell in Mk. Adding the values in
each matrix Mk then results in the number of common k-long subsequences
of the pertaining sequences. The process stops as soon as all cells of Mk+1

equal zero, implying that x and y have no subsequences in common with
a length of k + 1 or longer and that all common subsequences have been
counted but the empty λ. The process described and illustrated in Fig. 1, is
formalized in the next theorem 1.

Figure 1: Counting 1-, 2- and 3-long common subsequences of x = abac and y = bacb
using a grid: common subsequences are represented by paths of arrows that are either
self-referencing in case of 1-tuples (left grid) or that are pointing to the “South-East”
(right grid). The resulting counts are stored in matrices M1, M2 and M3. There are no
common 4-long subsequences, hence we conclude that μ(x, y) = 5 + 5 + 1 + 1 = 12, the
last “+1” counting λ, the empty sequence.
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Theorem 1. [10, 12] Let x, y ∈ Σ∗. Furthermore, let μ(x, y) denote the
number of matching embeddings of the pair (x, y), let μk(x, y) denote the
number of k-long embeddings of x and y and let Mk =

(
mk

ij

)
denote |x|×|y|-

matrices as follows. We set m1
ij = 1 if xi = yj, and m1

ij = 0 otherwise. For

2 ≤ k ≤ n, we set mk
ij = m1

ij

∑
a>i,b>j m

k−1
ab . Then μk(x, y) =

∑
ij m

k
ij and

μ(x, y) = 1 +
∑
k=1

μk(x, y) (3)
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Proof. By induction over k, mk
ij equals the number of k-long common em-

beddings that start at position i in x and at position j in y and spell the
same string.

Let M = min{|x|, |y|}. Common subsequences of (x, y) cannot be longer
thanM and thus theorem 1 implies an algorithm of complexity O(M ·|x|·|y|).
A faster algorithm, of complexity O(|x| · |y|), was proposed in [12, Theorem
2] but it is much less versatile than the algorithm implied by theorem 1. The
latter algorithm is shown in pseudo-code as Algorithm 1.

The algorithm is initialized in lines 1-11, constructing the matrix M1

after which the algorithm continues in the while-loop in lines 12 and 33,
constructing successive Mk. There are two main optimizations in Algorithm
1 compared to theorem 1. The first one is in line 32, where the algorithm
diminishes the size of the matrix processed in each cycle of the while-loop.
The second optimization prevents actually carrying out the many additions
implied by the theorem’s statement that

mk
ij = m1

ij

∑
a>i,b>j

mk−1
ab . (4)

Instead, the Algorithm first evaluates, in lines 13-17, the “backwards” row-
sum

mk
ij =

∑
m=1

∑
b=j+1,1

mk−1
ib (5)

and then, in lines 19-31, evaluates, the “backwards” column-sum

mk
ij = m1

ij

∑
j=1

∑
a=i+1,1

mk−1
aj . (6)

It is not difficult to see that the algorithmic complexity of the Grid-algorithm
when applied to sequences of length |x| and |y| is of order O(M |x||y|) with
M = min{|x|, |y|}. The reader notes that by changing the summation in Eq.
(4) to

mk
ij = m1

ij max
a>i,b>j

mk−1
ab , (7)
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Algorithm 1: Grid-algorithm, implements theorem 1.

Require: x = x1 . . . xr, y = y1 . . . yc
1: s← 0
2: for i = 1 to r do
3: for j = 1 to c do
4: if xi = yj then
5: m1

ij ← 1, mij ← 1, s← s+ 1
6: end if
7: end for
8: end for
9: if s = 0 then

10: return s+ 1
11: end if
12: while (r > 0) ∧ (c > 0) do
13: for i = 1 to r do
14: s← 0
15: for j = c to 1 do
16: t← s, s← s+mij, mij ← t
17: end for
18: end for
19: μk ← 0
20: for j = 1 to c do
21: s← 0
22: for i = r to 1 do
23: t← s, s← s+mij

24: mij ← t×m1
ij

25: μk ← μk +mij

26: end for
27: end for
28: if μk = 0 then
29: return μ+ 1
30: end if
31: μ← μ+ μk

32: r ← r − 1, c← c− 1
33: end while
34: return μ+ 1
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the algorithm evaluates an inner product of vectors constructed according to

xr(u) =

⎧⎨
⎩

1 if u � x

0 otherwise
, (8)

i.e. it ignores embedding frequency of the subsequences. Grids are related
to edit graphs which have been used to find longest common subsequences
[e.g. 3, 17].

4. Weighing the characters

In some applications, it might be worthwhile to put more weight on the
occurrence of some characters or states, like for example “infected” or “un-
employed”; such states could be medically or demographically significant. In
this section we discuss the principles of such weighing and we discuss a spe-
cific interpretation of it, that allows for comparing partial rankings as arise
in e.g. decision theory and statistics.

4.1. Principles

Weighing characters is easily accomplished by defining a weight-function
w : Σ→ R

+ of the characters to the non-negative real numbers and defining
the weighing

ω(u) =
∏
i

w(ui) (9)

and thus constructing vectors x = (x1, x2, . . .) according to

xr(u) =

⎧⎨
⎩

ω(u)|x|u if u � x

0 otherwise
, (10)

Implementation into the Grid-algorithm is easy: replace line 5 by

5′ : m1
ij ← w2(xi), mij ← w2(xi), s← s+mij

where w(·) is a predefined array of weights.
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4.2. Partial rankings as bucket strings

A ranking is an ordered set, e.g. a set of produce ordered according to
the preferences of a judge, a set of politicians ordered according to the atti-
tudes of a voter or a set of patients, ordered according to surgeon’s treatment
priority. Often, judges are not able or do not care to order all pairs of items
and as a result, “ties” occur in which case the ordering is called “partial”.
Formally, let Σ with |Σ| = d denote a set of items. Following [14], we call
the 2d − 1 non-empty subsets of Σ “buckets” Bi. A partial ordering is a
string of such buckets B = B1 . . .Bm with 1 ≤ m ≤ d; within buckets, items
are unordered and between different buckets, items are ordered. For exam-
ple, let Σ = {a, b, c, d, e, f} denote the set of items and define B1 = {b, e},
B2 = {a} and B3 = {c, d, f}, then B = B1B2B3 = {b, e}{a}{c, d, f} is a
bucket string representing a partial ordering of the items of Σ. Given Σ,
there exist

∑
k

{
d
k

}
k! of partial orderings of all items, where

{
d
k

}
denotes a

Stirling number of the second kind [24, 25].
Clearly, a bucket string of length m can be interpreted as set of full orderings
of only m items. We say that an m-long full ordering x = x1 . . . xm is com-
patible with an n-long bucket string B = B1 . . .Bn, m ≤ n, when xi ∈ Bki
and xj ∈ Bkj implies ki < kj iff i < j and we write x 	 B to denote such com-
patibility. For example, x = abc is compatible with B = {a, d}{e, b}{c, f, g}
but z = acf is not. Clearly, a bucket string B = B1 . . .Bn has

∏
i |Bi| distinct

compatible orderings. Writing BY ;i to denote the ith bucket of bucket string
Y , we say that the ordering x is compatible to both bucket strings Y and
Z, precisely when xi ∈ BY ;i ∩BZ;i. Hence, we can use the Grid-algorithm to
compare partial rankings through the implementation

5′′ : m1
ij ← |BX ;i ∩ BY ;i|, mij ← |BX ;i ∩ BY ;i|, s← s+mij .

The algorithm then evaluates an inner product of bucket string representing
vectors that are constructed according to

xr(u) =

⎧⎨
⎩

1 if u 	 B

0 otherwise
, (11)

hence the algorithm counts the number of matching suborders. Clearly, the
more matching suborders, the more similar the rankings.
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5. Weighing Subsequence Lengths and Gaps

Life courses and careers normally share most, if not all states: most
people live with their parents during childhood, go to school, find partners
and jobs and sooner or later become parents. Similarly, proteins are build
from the same, limited set of nucleotides. So, it is not surprising that many
kinds of strings share many short subsequences. Therefore, one might want
to penalize for shorter sequences. As the Grid-algorithm counts the common
subsequences in an orderly manner, it is easy to weigh according to length
through introducing a convex weighing function in Equation 3, yielding

μ(x, y) = 1 +
∑
k

L(k, μk(x, y)). (12)

Such a modification is particularly easy to implement by modifying line 31
of Algorithm 1:

31′ : μ← μ+ L(k, μk).

Let u ∈ S(x, y), i.e. u is common to both x and y. When the characters of u
are widely spaced in either or both originals, then umay be quite insignificant
in quantifying the similarity between x and y. A way to deal with this is
to weigh the count of common subsequences with the size of their gaps.
A particularly simple method would be to simply exclude all subsequences
which show gaps that exceed some fixed limit [20, 21, 22]. We call this a
“hard” gap-penalty of size h. Hard-penalizing is easily implemented into the
Grid-algorithm by simply limiting the elongation of subsequences already
counted: we just evaluate the limited sum (compare to Equation (4)):

mk
ij = m1

ij

i+h∑
a=i+1

j+h∑
b=j+1

mk−1
ab (13)

= m1
ij

( ∑
a>i,b>j

mk−1
ab −

∑
a>i+h,>j+h

mk−1
ab

)
, (14)

Equation (14) reflecting the way the hard-penalizing can be implemented in
the Grid-algorithm. Thereto, one modifies line 16 to

16′ : t← s, s← s+mij −mi,j−h, mij ← t−mi,j−h
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and line 23 to
23′ : t← s, s← s+mij −mi−h,j,

thus evaluating an inner product of vectors x = (x1, x2, . . .) constructed
through

xr(u) =

⎧⎨
⎩
|x|u if (u � x) ∧ (maxi{gi(u|x)} < h)

0 otherwise
. (15)

Soft-penalizing gaps would then mean that we assign a penalty to each gap,
the size of it depending upon the size of the gap. However, soft-penalizing is
not so easy to implement in the Grid-algorithm because specific information
about the size of the gaps is lost in the summations of Equations (5) and (6)
(the loops starting in lines 13 and 20 of the Grid-algorithm).
To implement flexible soft-penalizing of gaps, we need an algorithm that se-
quentially deals with all gaps and that is, consequently, slower than the Grid-
algorithm. However, in the context of comparing (partial) ranks, wherein
each character can occur only once, this alternative has an algorithmic com-
plexity of order O(n2) where n denotes the size of the item set. In the next
section, we concisely deal with the alternative, called the Trail-algorithm.

6. Soft gap-penalizing and the Trail-algorithm

In the Grid-algorithm, relatively much time is spend on adding the el-
ements of the matrices Mk, most of which equal 0. This useless adding of
zero’s is avoided in the Trail-algorithm, where we first construct a trail T of
the non-zero entries of M1. This trail is a 2-column array where each row
contains the row- and column-indices of the non-zero entries of M1. Thus,
for the toy-sequences x = abac and y = baca, the (transpose of) T would
equal

T′ =
(
1 1 2 3 3 4
2 4 1 2 4 3

)
.

Next, for each row of T, say the ith row, we create a set of row-indices Di

such that
j ∈ Di iff (ti1 < tj1) ∧ (ti2 < tj2). (16)

Hence, j ∈ Di implies that each common subsequence of the pair (x, y) that
ends on xi can be elongated to a longer common subsequence that ends on
xj . For the running example, this would yield D1 = {5, 6}, D3 = {4, 5, 6},
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D4 = {6} and the remaining Di being empty.
Once available, we can use the sets Di to recursively construct a matrix
Q = (qij) of which each entry qij contains the number of j-long matching
subsequences that start with xti1 = yti2 by first defining qi1 = 1 for all i and
than evaluating the next columns through using qik =

∑
j∈Di

qj(k−1). Finally,
we obtain μ(x, y) = 1 +

∑
ij qij .

We formalize this procedure in the next theorem, a special case of [13, The-
orem 3]

Theorem 2. Let x and y denote nonempty strings over some alphabet Σ and
let T = (ti1, ti2) be constructed such that xti1 = yti2 for all i. Let Di be sets
such that j ∈ Di iff (ti1 < tj1) ∧ (ti2 < tj2) and let the matrix Q = (qij)
be defined by qi1 = 1 for all i and, for i > 1, qij =

∑
k∈Di

qk(j−1). Then
μ(x, y) = 1 +

∑
ij qij.

Proof. The proof is by induction and left to the reader.

For strings of lengths m and n, the construction of the matrix T requires
m ·n operations that yield a matrix T with, say, k rows, k depending on the
number of repetitions of characters in the strings. Then constructing the Di

takes k(k−1)/2 = O(k2) comparisons and each next column of Q requires at
most O(k2) additions and there will be at most k columns in Q. Therefore,
the algorithm is of complexity O(k3). This can be quite a big number. If, on
the other hand, k = |Σ| as in comparing (partial) rankings, the complexity
is quite acceptable. Therefore, the algorithm is presented in pseudo-code as
Algorithm 2

Soft-penalizing gaps is easy now since we can modify line 26 of the Trail-
algorithm to

26′ : qij ← qij + qDim(j−1) × f(ti1, ti2, tDim1, tDim2)

wherein f is an arbitrary function that can be made to operate on the gaps
tDim1 − ti1 and tDim2 − ti2 in any way.

7. Soft-Matching the Characters

So far, we have dealt with “hard” matching of characters or states: a
character from the one sequence matches or does not match to a particular
character of another sequence, and if one or more characters do not match,
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Algorithm 2: Trail-algorithm, implements theorem 2.

Require: x = x1 . . . xr, y = y1 . . . yc
1: k ← 0, M ← min{r, c}
2: for i = 1 to r do
3: for j = 1 to c do
4: if xi = yj then
5: k ← k + 1
6: Ik1 ← k, Ik2 ← j
7: �k ← 0
8: end if
9: end for

10: end for
11: for i = 1 to k − 1 do
12: for j = i+ 1 to k do
13: if (Ii1 < Ij1) ∧ (Ii2 < Ij2) then
14: �k ← �k + 1, Di�k ← j
15: end if
16: end for
17: end for
18: for i = 1 to k do
19: qi1 ← 1
20: end for
21: μ← k
22: for j = 2 to M do
23: μj ← 0
24: for i = 1 to k do
25: for m = 1 to �i do
26: qij ← qij + qDim(j−1)

27: end for
28: μj ← μj + qij
29: end for
30: if μj = 0 then
31: return μ+ 1
32: end if
33: μ← μ+ μj

34: end for
35: return μ+ 1
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the subsequences do not match. However, in some applications it is more
sensible to account for a certain degree of proximity or matching between
different characters. For example, the replacement of a particular nucleotide
by some others may be much more likely than average. Likewise, certain
states in social demography may be less dissimilar than others; for exam-
ple “Married” and “Cohabitating” may be considered as less dissimilar than
“Married” and “Single”.
Soft-matching means that we compare unequal characters or subsequences
and this cannot be attained by evaluating the standard inner product 〈x,y〉 =
x′y =

∑
i xiyi. because this involves only comparing identically indexed co-

ordinates. However, it is well known [e.g. 32] that 〈x,y〉 = x′Ay is an inner
product too, provided A is positive semi-definite.
Now suppose that we have a square, symmetric(|Σ| × |Σ|)-matrix M =
(m(σi, σj)) = (mij) with 0 ≤ mij ≤ 1 and mii = 1 and that mij denotes a
“degree of matching” between characters σi and σj . Perhaps, this M derives
from expert judgment or perhaps from empirical transition or replacement
frequencies. It is convenient to assume m(σi, λ) = m(λ, σi) = 0 for all char-
acters σi ∈ Σ. Furthermore, suppose that we define the matching m∗(u, v)
between two subsequences u and v as resulting from

m∗(u, v) =
∏
i

m(ui, vi) (17)

This in turn generates a matrix M∗. An example of the structure of such a
matrix is shown in Fig. 2. Clearly, if M is positive semi-definite, so is M∗

and hence x′M∗y is an inner product with any of the string-representations
discussed so far.

Evaluating this inner product just requires a simple modification of the
Grid-algorithm: we replace its line 5 by

5 : m1
ij ← mij , s← s+mij, mij ← m(xi, yj).

8. Representing run-lengths

Run-length encoding is a simple data-compression technique that can be
very efficient for strings in which long series of repetitions of the same char-
acters occur. Such strings are easily compressed to much shorter sequences
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Figure 2: Structure of the matrix M∗, given an alphabet Σ = {a, b, c} and lexicographic
ordering of Σ∗.

M =

⎛
⎝1 p q
p 1 r
q r 1

⎞
⎠ , M∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M . . . 0 . . . 0 . . .
... M pM qM

...
0 pM M rM 0 . . .
... qM rM M

...
... M . . .

0 . . . 0 . . .
...

. . .
...

... q2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

of pairs of characters and run-length counters like e.g.

x = aaabbcccccccccdddd → x′ = a3b2c9d4.

Run-length encoding (RLE) is widely used in many different fields, for ex-
ample in computational biology [34] to encode strands of DNA, in digital
image processing of representations of simple graphics [31] and holograms
[23] and in social demography to encode strings of life course states [29] and
their durations. RLE has been amply studied [e.g. 27], in particular in string
comparison algorithms that use aligning techniques [9, 15]. The complexity
of these algorithms depends on both the lengths of the uncompressed strings
and the lengths of the compressed strings. Let N and n denote the length
of the uncompressed string x, respectively of the compressed string x′ and
likewise, let M and n denote the lengths of y and y′. With this notation,
the very general algorithm as proposed in [9] is of complexity O(Nm+Mn),
i.e. the complexity still depends on the lengths of the uncompressed strings.
In this section, we will present a comparison algorithm that is of complex-
ity O(min{m,n}mn), i.e a Grid-based algorithm that is independent of the
lengths of the uncompressed strings. This is a substantial improvement when
the uncompressed sequences are long.
To discuss the algorithm, it is convenient to write a run-length or dura-
tion encoded string as a pair (x, tx), where x = x1 . . . xn is a string and
tx = tx1, . . . txn is a sequence of real-valued non-negative durations or run-
lengths. Furthermore, for a subsequence xi1 . . . xi|u| = u � x, we write
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Tx(u) =
∑

j tij for the duration of the subsequence. However, Tx(u) is ill-
defined when multiple embeddings of the same subsequence occur as for
example in (x = abac, tx = 2, 4, 3, 5): Tx(ac) = 7 and Tx(ac) = 8. Therefore,
we introduce the concept of an embedding.
Let u = u1 . . . u|u| � x. As said, the integer sequence ix(u) = i1, . . . , i|u| is
called an embedding of u in x, precisely when xi1 . . . xi|u| = u. Clearly, for a
particular x ∈ Σ∗ and any u ∈ Σ∗, there exists a set Ix(u) of such embeddings
and this set may or may not be empty. Now we define the duration Tx(u) of
u in x as the sum of the durations of all embeddings:

0 ≤ Tx(u) =
∑

ix(u)∈Ix(u)

∑
j∈ix(u)

txj . (18)

Now Tx(u) is well-defined and we immediately use this definition to construct
a vector x = (x1, x2, . . .) representing the pair (x, tx) through

xr(u) = Tx(u) (19)

and hence, we are interested in evaluating inner products of the form

x′y =
∑

xiyi

=
∑

u∈S(x,y)

⎛
⎝ ∑

ix(u)∈Ix(u)

∑
j∈ix(u)

txj

⎞
⎠
⎛
⎝ ∑

iy(u)∈Iy(u)

∑
j∈ix(u)

tyj

⎞
⎠ (20)

=
∑

u∈S(x,y)

(|x|uT x(u)
) (|y|uT y(u)

)
, (21)

where T x(u) denotes the average duration of the embeddings of u in x. So,
the last Equation (21) shows that we weigh the common subsequences for
embedding frequency and for average duration.
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For fixed u and fixed embeddings, Equation (20) reduces to⎛
⎝ ∑

j∈ix(u)
txj

⎞
⎠
⎛
⎝ ∑

k∈ix(u)
tyj

⎞
⎠ (22)

=(txj1 + . . .+ txj|u|)(tyk1 + . . .+ tyk|u|) = P ·Q (23)

Now suppose that we can elongate this fixed subsequence u with some com-
mon state σ to uσ, i.e. to a common subsequence embedding of length |u|+1
and, furthermore, suppose that the duration of σ in x equals a and that its
duration in y equals b. Then evaluating this particular product of sums of
durations requires us to evaluate

(txj1 + . . .+ txj|u| + a)(tyk1 + . . .+ tyk|u| + b) (24)

=(P + a)(Q+ b) (25)

=PQ+ aQ + bP + ab (26)

Hence, most of the calculations done to evaluate Equation (23) ca be recycled
when evaluating Equation (26) and the principle embodied in Equation (26)
can easily be implemented as an extension of the Grid algorithm:

Theorem 3. Let (x, tx) and (y, ty) denote run-length encoded strings with
x ∈ Σm, y ∈ Σn and Σ = {σ1, . . . , σd}. Define the the (m × n)-arrays
M1 =

(
m1

ij

)
, U1 =

(
u1
ij

)
, V1 =

(
v1ij
)
and W1 =

(
w1

ij

)
as follows: if xi = yj,

m1
ij = 1, u1

ij = txi, v1ij = tyj , w1
ij = txityj

and otherwise m1
ij = u1

ij = v1ij = w1
ij = 0. For 1 < k ≤ M = min{m,n},

define the arrays Mk =
(
ekij
)
, Uk =

(
uk
ij

)
, Vk =

(
wk

ij

)
and Wk =

(
vkij
)
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through

mk
ij = m1

ij

∑
a>i,b>j

mk−1
ab , (27)

uk
ij = m1

ij

( ∑
a>i,b>j

uk−1
ab +mk

ijtxi

)
, (28)

vkij = m1
ij

( ∑
a>i,b>j

vk−1
ab +mk

ijtyj

)
, (29)

wk
ij = m1

ij

( ∑
a>i,b>j

(
wk−1

ab + txiv
k−1
ab + tyju

k−1
ab

)
+mk

ijtxityj

)
. (30)

Let x and y denote the representing vectors, constructed according to Eqn.
(20), of the run-length encoded strings (x, tx) and (y, ty). Then

x′y = 1 +
M∑
k=1

∑
i,j

wk
ij (31)

Proof. The proof is by induction and is left to the reader.

In Fig. 3, we illustrate the algorithm implied by Theorem 3 by ap-
plying the Theorem to the RLE-strings (x = abac, tx = (2, 3, 4, 2)) and
(y = baca, ty = (2, 4, 3, 2)).

Actually implementing the algorithm implied by Theorem 3 amounts to
an extension of the code sketched in Algorithm 1. This extension is quite
straightforward when the calculations are organized according to the follow-
ing scheme: after initializing the matrices M, U, V and W, we first we
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Figure 3: Grid-algorithm for RLE-strings: Matrices (omitting initial zero’s) resulting from
Theorem 3 applied to (x = abac, tx = (2, 3, 4, 2)) and (y = baca, ty = (2, 4, 3, 2)).

k k = 1 k = 2 k = 3

Mk

⎛
⎜⎜⎝

1 1
1

1 1
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

2 0
3

1 0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0
1

0 0
0

⎞
⎟⎟⎠

Uk

⎛
⎜⎜⎝

2 2
3

4 4
2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

10 0
19

6 0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0
9

0 0
0

⎞
⎟⎟⎠

Vk

⎛
⎜⎜⎝

4 2
2

4 2
3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

13 0
15

7 0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0
9

0 0
0

⎞
⎟⎟⎠

Wk

⎛
⎜⎜⎝

8 4
6

16 8
6

⎞
⎟⎟⎠

⎛
⎜⎜⎝

64 0
95

42 0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0
81

0 0
0

⎞
⎟⎟⎠
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calculate

mk
ij =

∑
a>i, b>j

mk−1
ab (32)

uk
ij =

∑
a>i, b>j

uk−1
ab (33)

vkij =
∑

a>i, b>j

vk−1
ab (34)

wk
ij =

∑
a>i, b>j

wk−1
ab (35)

(36)

through the addition-principle demonstrated in Algorithm 1 and then update
the matrices through calculating (in the order as indicated below)

ekij = e1ije
k
ij , (37)

wk
ij = e1ij

(
wk

ij + u1
ijv

k
ij + v1iju

k
ij + ekijw

1
ij

)
, (38)

uk
ij = e1ij

(
uk
ij + u1

ije
k
ij

)
, (39)

vkij = e1ij
(
vkij + v1ije

k
ij

)
. (40)

Using this approach, it is also immediate how to extend the Trail-algorithm
to handling RLE-strings.
Clearly, complexity of the algorithm is, despite the extensions due to the
added computation of the matricesU,V andW, still of orderO(min{m,n}mn).
The reader notes that, because of the multiplications in Equations (28)-(30),
the numbers in the entries of the matrices can become quite big. On the
other hand, the counter-sequences tx and ty are in no way confined to be
integers. Therefore, it may be convenient to scale these sequences in such a
way that the average or median counter-value equals 1.0. Finally, the reader
notes that the numbers in the counter-sequences tx need not refer to just run-
length or duration; they could be used to convey any quantifiable property of
the characters. An example of such a quantifiable property is in comparing
rankings: we know that common sub-ranks of highly ranked items should
get more weight than common sub-ranks that mainly consist of low-ranked
items. So, we could assign a weight to a each item in a ranking, the weight
being some function of its position.
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9. Conclusions

So far, we presented two very flexible kernels to compare strings, along
with pseudo-code to implement them. We discussed variations of the Grid-
algorithm to accommodate applications in social demography, in computa-
tional biology and in decision making. The counting of gap-restricted em-
beddings, as described in Equations (14) and (15), was mentioned as an open
problem in [12]. All of these variations could have been implemented as vari-
ations of the Trail-algorithm too; we leave this as a small challenge to the
interested reader who wants to compare strings that only have few character
repetitions.
An extension of the Grid-algorithm, embodied in Theorem 3 and illustrated
in Figure 3, compares strings with a quantified character feature. It is natural
to interprete this feature as “run-length” or “duration” but other interpreta-
tions are possible, for example when comparing rankings. Remarkably, the
time-complexity of this extension is only O(min{m,n}mn) and fully inde-
pendent of the length of the “uncompressed” strings.
The Gramm matrix that results from application of kernels, especially of so-
phisticated string kernels, is known to have relatively big diagonal elements,
expressing the fact that strings have much more features in common with
themselves than with any other string, the more so when the strings are very
long. This may result in small values of similarity metrics like for example

s(x, y) =
x′y

x′x+ y′y − x′y
.

However, in most applications, there is no objection in applying some concave
transformation to the inner products before calculating similarity, at the risk
of losing the metric properties [7] of the similarity. For more sophisticated
methods to deal with this problem in the context of machine learning and
SVM’s the reader is referred to [36, 43].
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des sciences économiques et sociales de l’Université de Genève (2012).
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