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INTRODUCTION

Life course analysis : from causal to descriptive approaches
Since the mid-1970s, life course analysis has become a major field of interest in the social 
sciences. It implies a shift “from structure to process, from macro to micro, from analysis 
to synthesis, from certainty to uncertainty” (Willekens, 1999, p.26, quoted in Ritschard & 
Oris,  2005).  The  development  of  life  course  analysis  is  simultaneously  linked  to 
theoretical issues as well as to advances in longitudinal micro-individual data collection 
and statistical analysis. The use of longitudinal data, such as panels or retrospective event-
history surveys, has developed considerably (GRAB, 1999). On the methodological side, 
new analysis techniques have spread slowly but cumulatively,  and social scientists now 
have a full toolbox. Since the early 1980s, the central approach has been  event history  
analysis (Kalbfleisch  & Prentice,  1980 ;  Allison,  1984 ;  Courgeau  & Lelièvre,  1992 ; 
Mayer & Tuma, 1990). This set of techniques, such as the famous Cox model (1972), is a 
generalization of life table methods. Focusing on the occurrence of specific events, they 
model  transition likelihoods or durations,  under the assumption that  life  courses result 
from a complex stochastic process (Courgeau & Lelièvre, 1986). As a consequence, more 
often than not, event history analysis is a parametric approach, with a causal view.

Although most empirical life course studies rely on an event-based approach, theory has 
underlined  the  importance  of  the concept  of  trajectory (Sackmann & Wingens,  2003): 
events should not be studied independently from each other, but rather as a sequence. This 
implies a “‘holistic’ perspective that sees life courses as one meaningful conceptual unit” 
(Billari, 2001, p.440). A holistic approach allows to summarize the timing and sequence of 
events, durations in the various states and durations between events (Settersten & Mayer, 
1997).  Contrary  to  event  history  analysis,  trajectory-based  methods  are  mostly  non-
parametric: they make no assumption about the process underlying life courses and they 
belong to the “algorithmic model culture” (Breiman, 2001). They chiefly aim at exploring 
and describing life course as a whole and at “fishing for patterns” (Abbott, 2000). Event-
based  and  trajectory-based  approaches  can  thus  be  considered  as  two  complementary 
cultures in life course analysis (Billari, 2005; Bry & Antoine, 2004): the latter intends to 
identify what differentiates life courses as a whole, while the former focuses on the risk of 
experiencing events (and its determinants).

Which metric should one choose1?
More  often  than  not,  the  first  step  of  holistic  approaches  consists  in  measuring  the 
dissimilarity  between life  courses  (regarded as  sequences).  Pairwise distances  between 
sequences can further be used in various ways, often with data reduction techniques such 

1.Although we are referring here to life course analysis, which is the field where sequence analysis has expanded  
rapidly, the methods under study would also apply to any kind of sequence data, as do the results we present in  
the remainder of the article.



as  multidimensional  scaling  or  clustering.  Many dissimilarity  metrics  exist  in  various 
domains  (bioinformatics,  data  mining...)  and  their  use  in  social  sciences  has  been 
developing rapidly for  a  decade or  two. The most  widely known is  certainly Optimal 
Matching Analysis (Abbott & Forrest, 1986), but other metrics for sequence analysis have 
been proposed and similar techniques using correspondence analysis also exist. Therefore, 
a crucial and pervasive issue in papers using holistic approaches is robustness: to what 
extent do the various techniques lead to consistent and converging results? What kinds of 
patterns does each of the metrics identify most effectively?

Numerous articles have been devoted to comparing metrics. However, most of them have 
limitations: they deal with a narrow range of methods at a time; they apply to specific sets 
of empirical data;  other choices implied in the holistic approach (clustering techniques, 
etc.) may blur the results. So generalization is often problematic. We propose a systematic 
comparison of a collection of metrics that have been used in the social science literature, 
based  on  the  examination  of  dissimilarity  matrices  computed  from  two  data  sets:  a 
simulated  one  comprising  various  sequence  patterns  that  sociologists  may  aim  at 
identifying, and an empirical one (about occupational careers) as a “control sample”. Thus 
what we are trying to do here is not to point out a hypothetical “best metric”, but rather to 
unravel the specific patterns to which each alternative is actually more sensitive.

We will successively present a short review of existing methods for sequence analysis, a 
summary of the comparisons conducted in the literature, our own protocol for comparison, 
and finally, our results and discussion.

VARIOUS DISSIMILARITY METRICS

The numerous dissimilarity metrics can be broadly grouped into two families: one linked to 
sequence analysis algorithms and the other to the tradition of geometric data analysis.

'Algorithmic' sequence analysis metrics
Sequence analysis is a set of techniques  for handling longitudinal data as ordered strings of 
elements. Among these techniques, Optimal Matching has been used, discussed and criticized 
far more often than the others. Optimal Matching was first developed in signal treatment and 
bioinformatics (Sankoff & Kruskal, 1983), and was introduced into the social  sciences by 
Andrew Abbott during the 1980s (Abbott & Forrest, 1986). Its principle consists in measuring 
the dissimilarity between two sequences by transforming one sequence into the other. This 
can be done through three kinds of elementary operations: insertion (one element is inserted 
into a sequence),  deletion (one element  is  deleted from a sequence)  and substitution (one 
element is replaced by another in a sequence). Each operation can be assigned a cost. Thus the 
distance between two sequences is equal to the lowest cost needed to transform one sequence 
into the other.

To illustrate  optimal  matching,  we  will  present  two imaginary examples  of  sequences 
(Table 1). These sequences characterize school-to-work transitions, observed from ages 18 
to 29 (i.e. made of 12 elements) and with 3 possible states: student (S); unemployed or 
inactive  (U);  employed  (E).  Calvin  is  at  school  up  to  the  age  of  19,  then  remains 
unemployed for three years and finally gets a job at age 23. Hobbes is a student until age 
20, experiences two one-year spells of unemployment at ages 21 and 23, and works during 
the rest of the trajectory. These two sequences can be matched in different ways by means 
of insertions, deletions and substitutions. For instance, Hobbes’ sequence can be aligned 
with Calvin’s by deleting an S at the beginning of the sequence, inserting an E at the end 
and  replacing  E  by  U  between  the  U spells:  three  operations  are  necessary.  Another 



possibility consists in replacing S by U at 20, E by U at 22 and U by E at 23: this also  
requires three operations.

Table 1. Two examples of school-to-work transitions

age 18 19 20 21 22 23 24 25 26 27 28 29
Calvin S S U U U E E E E E E E
Hobbes S S S U E U E E E E E E

Cost setting of the elementary operations is a crucial step in optimal matching techniques: 
“The assignment of transformation costs haunts all optimal matching analyses” (Stovel et  
al, 1996). It underpins the method’s flexibility and its ability to fit the object of research 
(Lesnard,  2010). Practically speaking, insertion and deletion are considered as a single 
operation, called indel, as deleting an element in one sequence is equivalent to inserting it 
in the other.

Indel operations pay more attention to the order of events in the sequences, by matching 
identical subsequences located at distinct positions within the sequences. The associated 
drawback  is  that  they  distort  the  timing  of  events.  Substitutions,  on  the  other  hand, 
preserve  the  time  structure  by  comparing  simultaneous  situations,  but  they  alter  the 
sequence  of  events.  The  balance  between  these  costs  will  determine  which  kind  of 
regularities are best captured in the dissimilarities computed.

Substitution  costs  are  often  chosen  first.  They  may  be  constant  whatever  the  states 
substituted, or distinct for each pair of possible states. In the latter case, costs can be driven 
by theoretical issues such as social stratification (Halpin & Chan, 1998; Blair-Loy, 1999; 
Scherer, 2001) or by the data themselves. Data-driven substitution costs are usually based 
on  transition  likelihoods  between  the  states:  the  more  frequent  a  transition,  the  more 
similar the states, the lower the costs. This cost scheme has become widely used in recent 
years  (Han  &  Moen,  1999;  Rohwer  &  Pötter,  2005;  Aassve  et  al,  2007;  Robette  & 
Thibault,  2008).  Other  strategies  can  also  be  imagined,  for  instance  combining  a 
theoretical  hierarchy of  states  and transition  rates  (Abbott  & Hrycak,  1990;  Stovel  & 
Bolan, 2004).

Regarding indel costs, it is their relationship with substitution costs which is central. Some 
scholars  choose  equal  substitution  and  indel costs,  arguing  that  there  would  be  no 
theoretical  grounds  for  acting  differently  (Dijkstra  & Taris,  1995).  Thus,  the  distance 
between two sequences is equal to the smallest  number of operations needed to match 
them. This is known as the Levenshtein I distance (Levenshtein, 1965). Moreover, optimal 
matching  users  often  used  to  set  high  indel costs.  However,  with  sequences  of  equal 
length, if indel costs are higher than the maximum substitution cost multiplied by half the 
sequence length,  insertions and deletions  will  never be used.  This is  equivalent  to  the 
Hamming  distance (Hamming,  1950),  based  on  the  simultaneousness  of  identical 
elements: the dissimilarity between two sequences is equal to the number of substitutions 
needed to match them, i.e. the number of time units where the situation is different. With 
sequences of different length, such a high  indel cost leads to the use of insertions and 
deletions only to compensate for the length difference. Conversely, when indel costs are 
lower than half the minimum substitution cost, only  indel operations will be used. The 
dissimilarity  between  two  sequences  thus  corresponds  to  the  length  of  their  longest 
common subsequence (LLCS), which is also called  Levenshtein II distance. In the end, 
cost setting comes down to positioning the cursor between Hamming and Levenshtein II 



distances, depending on a preference for contemporaneousness of events or the existence 
of common subsequences (Lesnard & de Saint Pol, 2009).

While the use of optimal matching has increased significantly over the last decade, these 
techniques have been criticized (Levine, 2000; Wu, 2000; Elzinga, 2003)2, giving birth to 
a “second wave” of sequence analysis (Aisenbrey & Fasang, 2010).

For instance,  the choice of costs is often considered as arbitrary and weakly related to 
theoretical  grounds,  as  elementary  operations  have  no  straightforward  sociological 
interpretation (Levine, 2000; Wu, 2000; Elzinga, 2003). As a consequence, distances have 
no intrinsic meaning. Another criticism focuses on the order of events. Substitution costs 
are symmetrical, as replacing A by B in a sequence is equivalent to replacing B by A, and 
so the order of events is not properly taken into account (Wu, 2000). Moreover, optimal 
matching does not handle the direction of time (Wu, 2000). Indeed if transformation costs 
are  identical  at  any  point  in  time,  then  non-linear  time  dependency  of  sequences  is 
neglected. With respect to the latter limit, Lesnard proposed a modified version of optimal 
matching, called  Dynamic Hamming Matching, which uses time-varying costs (Lesnard, 
2010). Practically, a substitution costs matrix is computed at each point in time, from the 
transition likelihoods between the various states at this particular moment, and insertions 
and deletions are prohibited. This variant has been applied in a few studies (Glorieux et al, 
2008; Fasang, 2010; Lesnard & Kan, 2011).

Another  set  of  sequence  analysis  methods,  called  non alignment  techniques,  has  been 
developed. These metrics have the distinctive characteristic of not using the elementary 
operations  needed  in  optimal  matching.  Their  principle  consists  in  calculating  the 
similarity between sequences by comparing pairs of ordered elements of the sequences. 
DT coefficients (Dijkstra & Taris, 1995) compute the number of common pairs of ordered 
elements between two sequences. Elzinga’s metrics can be considered as extensions of DT 
coefficients (Elzinga,  2003; 2006). They are also based on order relationships between 
pairs of elements. For instance, Elzinga suggested evaluating the longest common prefix 
between sequences (LCP), the length of the longest common subsequence (LLCS), the 
number of common subsequences (NCS) or the number of matching subsequences (NMS). 
The latter has been used successfully in some life course studies (Elzinga & Liefbroer, 
2007; Bras et al, 2010; Liefbroer & Elzinga, 2012).

A few recent options for cost setting in optimal matching can also be reported (Gauthier et  
al, 2009 ; Hollister, 2009 ; Halpin, 2010). Lastly, another alternative has been proposed in 
a recent issue of this journal (Rousset  et al,  2012): we refer the reader to the original 
article for a detailed presentation. It should be noted that the foundations of Rousset et al's 
method,  i.e.  taking  into  account  the  fact  that  transition  likelihoods  may  be  unequally 
spread over the life course, are rather similar to those of Lesnard's  Dynamic Hamming  
Matching.

'Geometric data analysis tradition' metrics
A second family of dissimilarity measures between sequences makes use of the broad range 
of geometric data analysis techniques. These metrics have  seldom been used in the Anglo-
Saxon social science literature (Van der Heijden, 1987; Martens, 1994; Van der Heijden et al, 
1997). Yet numerous examples exist in French studies, particularly in the field of school-to 
work  transitions  and  careers3.  This  might  be  related  to  the  long-standing  tradition  of 
2 Most of these criticisms have been widely discussed in Abbott (2000).
3 See for instance Degenne et al (1996), Béduwé et al (1995) or Robette & Thibault (2008). For a comprehensive 
review, see Grelet (2002) or Robette (2011).



correspondence analysis (or “geometrical analysis”) in French statistics (Bry, 1995 et 1996 ; 
Lebart et al, 2000, Le Roux & Rouanet, 2004).
Several variants exist to apply geometric data analysis to life courses. The main difference 
between them lies in the way trajectories are coded and on the balance between chi-squared 
and Euclidean distance.
A first way of coding life courses consists in transforming them into an indicator matrix. In 
our example, 3 dummy variables are created for each year (one for each possible state): they 
are equal to 1 if the individual is in the given state during the given year, 0 otherwise. Thus 
there  are  12*3=36 dummy variables.  For instance,  Calvin’s  trajectory would be coded as 
follows:

Table 2. Indicator matrix of Calvin’s life course

18S 18U 18E 19S 19U 19E 20S 20U 20E ... 29S 29U 29E
1 0 0 1 0 0 0 1 0 ... 0 0 1

Reading: At age 18, Calvin is a student, and not unemployed or in employment, and likewise  
at age 19 etc…

After the coding step, the indicator matrix may used as input data for Correspondence 
Analysis  (CA),  which  applies  chi-squared  distance.  However,  unscaled  Principal 
Component Analysis (PCA) may be used instead of CA, which implies Euclidean distance 
instead  of  chi-squared  (Espinasse,  1993;  Béduwé  et  al,  1995).  In  the former  case,  the 
distance between two elements of the sequence is weighted by the inverse of the variable 
frequency: states which are infrequent in a given year contribute more to the measure of 
the dissimilarity between two life courses than the most frequent states. In other words, 
rare situations are given more importance. On the contrary, Euclidean distance makes the 
states'  contribution  equal  and  corresponds  to  the  number  of  discordances  between 
sequences.  The  final  dissimilarity  matrix  is  computed  from  the  coordinates  on  the 
dimensions of CA or PCA.

Dissimilarity  metrics  using  an  indicator  matrix  and  CA  or  PCA  focus  on  the 
contemporaneousness of identical situations, whether these identical situations follow each 
other  or  are  located  at  distant  moments  of  the  life  course.  The  resemblance  between 
trajectories  is  based  upon  the  duration  of  simultaneousness  in  common  states.  The 
simultaneousness implies that the timing of situations or events is taken into account. On 
the other hand, the nature of transitions and their unfolding – in other words the sequence 
– are not part of the dissimilarity measure.

Another way of coding life courses can be viewed as a summary of indicator matrices. It is 
sometimes  called  Qualitative  Harmonic  Analysis (QHA)  (Deville,  1974;  Deville  & 
Saporta, 1980; Dureau et al, 1994; Robette & Thibault, 2008). More precisely, the period 
under study is divided into sub-periods, then the time spent in each of the states for each 
sub-period is computed: this creates a number of variables equal to the number of sub-
periods multiplied by the number of states. This set of variables is used as input for a 
Correspondence Analysis.

Coding the life course data for QHA involves several steps. First, the period investigated 
(here from 18 to 29 years old) is divided into sub-periods. Then, for each sub-period, the 
proportion of its duration spent in each state is computed. The number of variables created 
is equivalent to the number of sub-periods multiplied by the number of states (Table 3). 
Finally, these variables are used as input for Principal Component Analysis.



Table 3. Example of QHA coding of Calvin’s life course

S,18-21 U,18-21 E,18-21 S,22-25 U,22-25 E,22-25 S,26-29 U,26-29 E,26-29
0.5 0.5 0 0 0.25 0.75 0 0 1
Reading : Calvin spent half of the first sub-period (from 18 to 21) as a student, the other half  

in unemployment, etc.

A number of sub-periods equal to the period’s length is equivalent to PCA with disjunctive 
coding. On the other hand, a unique sub-period would focus solely on durations in states. 
Therefore,  the  choice  of  the  number  of  sub-periods  is  a  trade-off  between  these  two 
borderline cases. Moreover, the sub-periods do not have to be of equal duration. On the 
contrary, short sub-periods can be chosen for eventful years of the life course and longer 
sub-periods for quieter years. The ability to highlight “dense” moments of the life course 
(Rindfuss et al, 1987) is one of the major advantages of this metric.

Compared to the codings based on indicator matrices, the division into sub-periods makes 
the metric less sensitive to exact simultaneousness in common states. In other words, two 
sequences of states that are identical but slightly shifted will be considered as more similar 
by QHA metrics than by the two previous ones.

A FEW EXISTING COMPARISONS

Although  comparisons  between  methods  are  not  a  central  issue  for  most  authors4,  a 
(certain) number of papers test the influence of different alternatives while detailing their 
methodological protocol.

Some  of  them choose  Optimal  Matching  and  test  various  cost  settings.  For  instance, 
drawing data from a study of the diffusion of Morris dancing in England, Forrest  and 
Abbott (1990) introduce variation in substitution costs and conclude that the method seems 
to behave robustly.  Reviewing this  work in a further  article,  Abbott  & Hrycak (1990) 
conclude that “the method thus seems to behave robustly with respect to variation […] in 
substitution costs […]. As is often the case, while care is needed, differences in minor 
analytic  decisions  are  unlikely  to  drastically  change  results”.  Chan  (1995)  tests  three 
substitution cost matrices on career data and notes “an impressive common core” across 
clusters  and adds that  the variation  “follows interpretable  patterns”.  In  the same way, 
Anyadikes-Danes  and  McVicar  perform  several  sensitivity  analyses  by  introducing 
changes  in substitution and  indel costs  in  a study of school-to-work transitions.  These 
highlight the fact that “relatively well-defined careers show up whether the cost matrix is 
designed to pick them out or not” (Anyadikes-Danes & McVicar, 2010) and that clusters 
are similar in nature, although there may be differences in cluster size and membership 
(McVicar & Anyadikes-Danes, 2002).

Other  studies compare  OMA with alternative metrics.  Lesnard (2010) applies  his  own 
technique - i.e. dynamic Hamming matching - to time-use data and it turns out to be quite 
similar  to Hamming distance,  while Levenshtein II distance is a little  less sensitive to 
contemporaneousness.  Robette  & Thibault  (2008) study occupational  careers with both 
Optimal  Matching and Qualitative  Harmonic  Analysis.  They note that  the main career 
clusters  are  very  similar  whatever  the  technique  and observe  that  OMA distinguishes 

4 Exceptions are Grelet (2002), Robette & Thibault (2008) or Aisenbrey & Fasang (2010).



slightly  better  between  stable  and  mobile  careers,  while  QHA  seems  slightly  more 
sensitive to the presence of rare states. Aisenbrey & Fasang (2010) complete their review 
of sequence analysis methods by a comparative overview of dynamic Hamming matching, 
OMA  with  transition-based  substitution  costs  and  Elzinga’s  Number  of  Matching 
Subsequences  (ignoring  durations)  applied  to  school-to-work transitions.  The first  two 
metrics  lead  to  the  same  substantive  patterns,  despite  mild  differences  in  size  and 
sensitivity  to  temporal  variation.  Still,  NMS “departs  more  radically”:  it  finds  several 
“internally homogeneous clusters” and “one extremely heterogeneous clusters […] that 
comprises more than one half of all cases”.

Finally,  Grelet  (2002)  focuses  on  Geometric  Data  Analysis  techniques  and  applies 
Principal  Component  Analysis,  Correspondence  Analysis  and  Qualitative  Harmonic 
Analysis  to school-to-work transitions.  The results  obtained largely converge,  although 
CA and QHA seem more sensitive to rare situations than PCA.

On the whole, most of these comparisons broadly agree that pattern fishing remains robust, 
whatever  the metric:  “As is  often the case,  while  care is needed,  differences in minor 
analytic decisions are unlikely to drastically change results” (Abbott & Hrycak, 1990).

Another  interesting result  is  that  the variations  observed in  these empirical  studies  are 
consistent with the statistical groundings of the metrics. For example, CA and QHA use 
chi-squared distance, which weights dissimilarities by the inverse of the states' frequency 
on the sequences: thus it is not surprising that they attach more importance to rare states. 
In the same way, the use of  indel  operations in Optimal Matching shifts subsequences 
backward or forward, which logically makes Hamming distance (which utilizes no indel 
operations) less sensitive to sequence and transitions than Levenshtein II distance (which 
utilizes only indel operations).

However,  these  comparisons  have  several  limitations.  First,  they  focus  on  only a  few 
metrics at a time: none of them tries to encompass a wide range of methods. Second, they 
all use one given set of empirical data. As a consequence, it is difficult to assess whether 
the conclusions remain valid beyond the specific case under study. And last but not least, 
comparisons are always performed by examining clusters of sequences.  Yet building a 
typology of sequences implies a long string of methodological choices: choice of sequence 
analysis  metric,  but  also  choice  of  coding,  clustering  technique,  parameterization  and 
number of clusters. If the comparison is led from the end of the string, it is not easy to  
disentangle the mutual influence of the various steps of the analysis. 

The strategy we adopt in the remainder  of this paper attempts to overcome – to some 
extent  –  these  limitations.  To do so,  we build  an  artificial  set  of  sequences  and then 
compare  the  dissimilarity  matrices  themselves  to  explore  similarities  and  differences 
between a large range of sequence analysis metrics.

COMPARING METRICS USING A SELECTED SET OF ARTIFICIAL SEQUENCES

A “reasoned” set of sequences
Most of the papers comparing some of the numerous sequence analysis methods use the 
empirical data they aim to study. The drawback of this approach is that while the results 
may be interesting, the extent to which they can be generalized is questionable: it only 
solves  the  robustness  issue  in  a  very  specific  context.  On  the  other  hand,  analyzing 
randomly simulated data would be pointless, as most of the time actual sequences don’t 
look like random data at all, particularly for life course analysis. Even if they include a 



certain amount of diversity, life courses usually have strong regularities and similarities. 
For these reasons, we chose to build a reasoned set of artificial  sequences. This set  is 
designed  to  contain  the  various  kinds  of  regularities  or  differences  that  life  courses 
analysts  usually  have  to  address:  shifts,  swaps,  insertions,  deletions,  replacements, 
repetitions of spells (Barban & Billari, 2011), etc.

The sequences  in  our artificial  set  are  of equal  length (l=20),  as some metrics  do not 
handle length differences in a straightforward and unambiguous way. Possible states are 
the following 8 letters: A, B, C, D, E, F, G, H.

Practically,  the set  of sequences  is  divided into subsets.  Each subset  corresponds to  a 
specific sequence of spells, with variable durations in these spells.

#1)Time warping: A subset of sequences A-B-C with varying durations in A, B and C 
(n=171)

#2)Shifts: Sequences A-B-C with B spell of fixed length equal to 6 and varying durations 
in A and C (n=13)

#3)Reversal: Initial sequences (subset #1) in reversed order, i.e. C-B-A (n=171)

#4)Swaps: Initial sequences (subset #1) with B and C swapped (i.e. A-C-B) or A and B 
swapped (i.e. B-A-C) (n=342)

#5)Total permutation: Initial sequences (subset #1) with all spells swapped, i.e. C-A-B 
and B-C-A (n=342)

#6)Short insertion: Sequence A-B-C with one short insertion (l=1) of spell D - i.e. D-A-
B-C,  A-D-B-C,  A-B-D-C and  A-B-C-D –  with  varying  durations  in  A,  B and  C 
(n=612)

#7)Long insertion: Sequence A-B-C with one long insertion (l=10) of spell D - i.e. D-A-
B-C,  A-D-B-C,  A-B-D-C and  A-B-C-D –  with  varying  durations  in  A,  B and  C 
(n=144)

#8)Two shorts identical insertions:  Sequence A-B-C with two short insertions (l=1) of 
spell D - i.e. D-A-D-B-C, D-A-B-D-C, D-A-B-C-D, A-D-B-D-C, A-D-B-C-D, and A-
B-D-C-D – with varying durations in A, B and C (n=821)

#9)Two long identical insertions: Sequence A-B-C with two long insertions (l=7) of spell 
D - i.e. D-A-D-B-C, D-A-B-D-C, D-A-B-C-D, A-D-B-D-C, A-D-B-C-D, and A-B-D-
C-D – with varying durations in A, B and C (n=60)

#10) Two shorts distinct insertions: Sequence A-B-C with two short insertions (l=1) 
of spell D and E - i.e. D-A-E-B-C, D-A-B-E-C, D-A-B-C-E, A-D-B-E-C, A-D-B-C-E, 
and A-B-D-C-E – with varying durations in A, B and C (n=821)

#11) Two long distinct insertions: Sequence A-B-C with two long insertions (l=7) of 
spell D and E - i.e. D-A-E-B-C, D-A-B-E-C, D-A-B-C-E, A-D-B-E-C, A-D-B-C-E, 
and A-B-D-C-E – with varying durations in A, B and C (n=60)

#12) One deletion:  Sequence A-B-C with A, B or C spell deleted,  i.e. B-C, A-C 
(subset #12a) and A-B (subset #12b), with varying durations in A, B and C (n=57)

#13) Two deletions:  Sequence A-B-C with A and B, B and C or A and C spells 
deleted, i.e. sequences A, B and C (n=3)



#14) One replacement: Initial sequences (subset #1) with A, B or C spell replaced 
by F, i.e. F-B-C, A-F-C and A-B-F (n=523)

#15) Two replacements: Initial sequences (subset #1) with A and B, B and C or A 
and C spells replaced by F and G spells, i.e. F-G-C, A-F-G and F-B-G (n=523)

#16) Three replacements: Initial sequences (subset #1) with A spell replaced by F, B 
by G and C by H, i.e. F-G-H (n=171)

#17) Repetition of one spell: Sequences A-B-A with varying durations in A and B 
spells (n=171)

#18) Repetition of two spells: Sequences A-B-A-B with varying durations in A and 
B spells (n=969)

#19) Repetitions  of a subsequence:  Sequences  A-B-A-B-A-B-A-B-A-B-A-B-A-B-
A-B-A-B-A-B (n=1)

#20) Shifted repetitions of a subsequence: Sequences B-A-B-A-B-A-B-A-B-A-B-A-
B-A-B-A-B-A-B-A (n=1)

#21) Repetition  of  the  whole  A-B-C  sequence:  Sequences  A-B-C-A-B-C  with 
varying durations in A, B and C spells (n=11 628)

These subsets represent a total of 17 604 sequences. In order to reduce computation costs 
and to balance the weights of the various subsets, in subsets comprising more than 50 
sequences, 50 sequences were selected at random. We end up with an artificial set of 854 
sequences.

Moreover, in order to  check some of our results against real life course data, we use a 
sample  of  1  341  French  male  occupational  careers  drawn  from  the  Biographies  et  
entourage survey (INED, 2000). These data provide a record of occupations held from 
ages 14 to 50: the length of sequences is constant and equal to 37. There are 9 distinct 
states:  farmer,  self-employed,  intermediate  occupation,  higher-level  occupation,  clerical 
and sales worker, manual worker, economically inactive, military conscript5.

The set of metrics
Our aim is to provide comparisons of a comprehensive set of dissimilarity metrics6.

Regarding  sequence-based  metrics,  we  first  use  optimal  matching  with  various  cost 
schemes. The trade-off between substitution and  indel costs determines which kinds of 
operations will be favoured. On the one hand, Hamming distance only uses substitutions, 
while on the other, Levenshtein II distance exclusively uses insertions and deletions. With 
sequences of equal length, both indel and substitution operations may be used if indel costs 
are  somewhere  between  half  the  minimum  substitution  cost  at  one  extreme  and  the 
maximum substitution cost multiplied by half the sequence length at the other. In order to 
uncover the optimal matching process between these two extremes, dissimilarity matrices 
are computed for the artificial set of sequences, with a constant substitution cost (s=2) and 
various indel costs. Cost schemes are then compared by computing correlation – by means 

5.For a detailed presentation of these data, see Robette & Thibault (2008).
6 The following analyses have been computed with R, more specifically the TraMineR package (Gabadinho et al, 
2011), and CHESA software for Number of Matching Subsequences (Elzinga, 2007).



of  Mantel  tests  –  between  these  matrices  and  dissimilarity  matrices  using  Hamming 
distance on one side and Levenshtein II distance on the other (Figure 1).

Figure 1 – Mantel correlation between dissimilarity matrices with varying optimal 
matching cost schemes

First,  our  approach  shows  a  Mantel  correlation  of  87.7%  between  Hamming  and 
Levenshtein II metrics.  As stated before,  with an  indel cost  lower than 1,  i.e.  half  the 
substitution cost, optimal matching is equivalent to Levenshtein II metric, which means 
that only indel operations are used. On the other side, equal  indel and substitution costs, 
i.e. Levenshtein I distance, lead to a correlation of 99.4% with Hamming distance: they are 
almost equivalent. The drop in correlation occurs with an indel cost between 0.5 and 1: an 
indel equal to 0.75 times the substitution cost can be seen as a median setting.

The same analysis applies to our occupational career data leads to the same results, with 
even higher correlations:  the Mantel correlation between Hamming and Levenshtein II 
reaches 97.3% (Appendix 1).

On the basis of these first results, the following 'algorithmic sequence analysis' metrics are 
chosen for further analyses: Hamming distance (HAM); Levenshtein II distance (LEVII); 
optimal matching with substitution costs based on transition likelihoods and a high indel 
cost, i.e. indel=2, in order to test the consequences of this common mode of substitution 
cost  setting  (OMAtr);  Dynamic  Hamming  Distance  (DHD);  the  variant  proposed  by 
Rousset  et  al (2012)  (ROUS);  Elzinga’s  Number  of  Matching  Subsequences  with 
durations handled through vector product (NMS).  For metrics relating to geometric data 
analysis techniques, indicator matrix with Principal Component Analysis (PCA), indicator 
matrix with Correspondence Analysis (CA) and Qualitative Harmonic Analysis (QHA) are 
chosen7.

Life course analysis can be defined as the statistical analysis of the timing of events or 
states, their sequencing, their quantum – i.e. the number of events or episodes – and the 
durations in the states (Billari, 2005). The metrics we have presented theoretically often 
take several of these dimensions into account. But in order to compare the extent to which 

7 This set of metrics does not claim to be exhaustive, but rather aims to take into account most of the most widely 
used sequence analysis techniques in social sciences.



they do so, it can be interesting to add metrics to our analysis that focus exclusively on one 
of them. Hamming distance focuses on the timing, through the simultaneousness in the 
states.  For duration,  we define a dissimilarity metric  equivalent  to the sum of squared 
differences in durations in the various states (DUR). For example, Calvin spends 2 years in 
S, 3 years in U and 7 years in E, while Hobbes spends 3 years in S, 2 years in U and 7 
years in E: the dissimilarity between Calvin's and Hobbes’ sequences is equal to (2-3)²+(3-
2)²+(7-7)²=2. Moreover, sequences can be represented in terms of episodes. Thus Calvin’s 
sequence would take the shape S/2; U/3; E/7 and Hobbes’ S/3;U/1;E/1;U/1;E/6, the figures 
indicating  the  number  of  consecutive  years  spent  in  the  states.  We can now define  a 
dissimilarity metric focusing on quantum of episodes (QUA), equivalent to the sum of 
squared differences in the number of episodes in the states. For instance, Calvin spends 1 
episode in each of the 3 states, while Hobbes spends 1 episode in S, 2 in U and 2 in E: the 
dissimilarity between their sequences is equal to (1-1)²+(1-2)²+(1-2)²=2. Last, concerning 
sequence of episodes, we use the Length of the Longest Common Subsequence metric 
ignoring duration (SEQ), i.e. Levenshtein II distance on sequences represented as S-U-E 
and  S-U-E-U-E (respectively for Calvin and Hobbes), for example.

We finally have a set of 12 metrics: the 9 examined here and 3 “control” metrics (DUR, 
QUA and SEQ).

RESULTS

Three sets of similar metrics
Each of these metrics is then used to compute a dissimilarity matrix between the sequences 
of  the  “reasoned”  set:  we  thus  have  12  dissimilarity  matrices.  Next  the  matrices  are 
compared by measuring Mantel correlation between each pair of matrices (Table 4).

Table 4. Mantel correlations between dissimilarity matrices, using different metrics
DUR QUA SEQ LEVII HAM OMAtr DHD ROUS PCA CA QHA NMS

DUR 100 34,9 34,3 88,9 72,6 75,1 73,4 72,1 70,1 61,5 62,7 -1,8
QUA 34,9 100 82,4 37,5 28,4 30,6 30,3 27,8 20,1 28,8 29,3 67,5
SEQ 34,3 82,4 100 53,2 46,6 49,1 49,3 45,0 36,8 45,8 45,9 52,1
LEVII 88,9 37,5 53,2 100 87,7 90,4 89,2 86,5 83,4 75,1 75,8 -1,2
HAM 72,6 28,4 46,6 87,7 100 99,3 99,7 99,2 96,9 72,4 72,0 -0,6

OMAtr 75,1 30,6 49,1 90,4 99,3 100 99,6 98,2 95,4 75,7 75,5 -1,0
DHD 73,4 30,3 49,3 89,2 99,7 99,6 100 98,6 95,8 75,5 75,2 -0,8

ROUS 72,1 27,8 45,0 86,5 99,2 98,2 98,6 100 97,9 70,7 70,2 -0,3
PCA 70,1 20,1 36,8 83,4 96,9 95,4 95,8 97,9 100 63,1 62,5 -6,2
CA 61,5 28,8 45,8 75,1 72,4 75,7 75,5 70,7 63,1 100 99,6 -3,8

QHA 62,7 29,3 45,9 75,8 72,0 75,5 75,2 70,2 62,5 99,6 100 -3,7
NMS -1,8 67,5 52,1 -1,2 -0,6 -1,0 -0,8 -0,3 -6,2 -3,8 -3,7 100

First  of  all,  we  notice  that  the  metrics  are  closer  to  the  duration  measure  (DUR)  – 
correlations range from 61% to 89% – than to the sequence measure (SEQ) – from 45% to 
53% - and above all the quantum measure (QUA) – from 20% to 38% –, except Elzinga's 
metric (NMS). Indeed the latter  has a null correlation with the duration measure but a 
relatively strong correlation with measures based on quantum (67%) and sequence (52%). 
Among the others, LEVII seems to better combine these dimensions of temporality: it has 
the highest correlations with DUR, QUA and SEQ.



More generally, looking at the whole set of correlations, three groups of metrics may be 
distinguished: a first group that we will call “OM-like” metrics, which comprises LEVII, 
HAM, OMAtr,  DHD, ROUS and PCA; a  small  group of  “CA-like”  metrics  (CA and 
QHA); and NMS.

In the first group, correlations range from 83% to almost 100%. Among others, we see that 
OMAtr, DHD and ROUS's correlations with Hamming distance (HAM) are above 99%: 
they are almost equivalent. PCA is very close as well, as its correlation with these other 
four metrics ranges from 95% to 98%: the emphasis on contemporaneousness brings them 
together.  LEVII,  through  the  use  indel operations,  gives  less  priority  to 
contemporaneousness,  its  correlation  with  the  other  “OM-like”  metrics  nonetheless 
remains high (from 83% to 91%).

In the second group, CA and QHA are almost equivalent (the correlation is 99.6%). Their 
correlation with “OM-like” metrics is high: between 62% and 76%.

NMS, conversely, is totally orthogonal to the other metrics: its correlation is almost null 
with any of them.

Most of these results still hold when the same approach is applied to actual sequence data,  
i.e. male occupational career data from the “Biographies et entourage” survey8. The major 
differences are an even higher homogeneity of “OM-like” metrics (for instance, LEVII and 
HAM have a correlation of 97.3%) and a lower correlation between “CA-like” and “OM-
like” metrics (from 45% to 57%).

Different ways of fishing for patterns
Now we have a global picture of the relative resemblances between metrics, we aim  to 
uncover what drives the differences between them, in other words to determine the kind of 
sequence patterns to which each of these metrics is more sensitive.

For each metric, the distances between sequences of the “reasoned” set are computed, the 
distances are ranked9 and then the ranks are scaled to make them comparable (the scaled 
rank is equal to 0 if the sequences are considered identical, and the most distant sequences 
have a scaled rank of 100).

We then compare the results of the different metrics for the specific sequence patterns one 
may want to fish (Table 5). For example, if the focus is on time-warping, scaled ranked 
distances between sequences from the first subset will be studied, i.e. ABC sequences with 
varying durations in A, B and C. If now the focus is on reversals, we will be interested in 
scaled ranked distances between sequences from the first subset and sequences from the 
third subset, i.e. between ABC and CBA sequences).

8 Although our standpoint consists in comparing directly the distances produced by the metrics rather than the 
typologies of sequences, which imply additional methodological choices, we have tested the robustness of our  
results with typologies. We have thus compared typologies (in 5, 10, 15 and 20 clusters) obtained from each of 
the metrics, and from our two data set, by measuring the resemblance between typologies using the Jaccard 
index. The 4*2=8 comparison matrices lead to the same conclusions about proximities between metrics (tables 
available from the authors).
9 Indeed, we are not interested in the distance level itself, but rather in the relative distances, i.e. the fact that two 
given sequences will be considered as more similar than two other sequences or not. Moreover, for some metrics  
the distance distribution is highly skewed, while it is not so for others: scaled distances would not be appropriate  
for a comparison between metrics.



Table 5. Scaled ranked distances between sequences, for different metrics and 
sequence patterns

Patterns DUR QUA SEQ LEVII HAM OMAtr DHD ROUS PCA CA QHA NMS

time warping  (#1 vs #1) 20 0 0 14 12 13 13 13 18 11 11 2

shifts  (#2 vs #2) 10 0 0 6 14 15 15 15 19 11 11 1

reversal, ie ABC vs CBA  (#1 vs #3) 20 0 50 44 50 55 55 55 64 43 45 23

swaps, ie ABC vs ACB or BAC  (#1 vs #4) 20 0 10 24 25 28 27 28 33 21 21 8

total permutation, ie ABC vs CAB or BCA  (#1 vs #5) 20 0 10 31 52 51 55 56 63 39 39 15

1 insertion of a short D spell  (#1 vs #6) 22 12 4 15 14 15 15 15 18 11 12 9

1 insertion of a long D spell  (#1 vs #7) 44 12 4 35 35 39 37 38 41 44 43 29

2 insertions of short D spells  (#1 vs #8) 24 27 10 17 16 17 17 17 18 11 12 55

2 insertions of long D spells  (#1 vs #9) 61 27 10 55 52 56 54 56 61 54 54 68

2 insertions of short D and E spells  (#1 vs #10) 26 27 10 18 18 19 19 19 20 14 15 52

2 insertions of long D and E spells  (#1 vs #11) 61 27 10 55 52 56 55 56 60 73 72 60

1 deletion, ie ABC vs AB  (#1 vs #12b) 33 12 4 26 24 26 25 26 34 19 20 5

1 deletion, ie ABC vs AC or BC  (#1 vs #12a) 34 12 4 27 21 23 23 23 29 19 20 6

2 deletions, ie ABC vs A, B or C  (#1 vs #13) 56 27 10 50 34 38 37 37 49 32 34 7

1 replacement, ie ABC vs ABF, AFC or FBC  (#1 vs #14) 42 27 10 35 27 31 31 29 31 46 49 17

2 replacements, ie ABC vs AFG, FBG or FGC  (#1 vs #15) 69 65 50 64 49 57 56 53 51 69 71 28

3 replacements, ie ABC vs FGH  (#1 vs #16) 90 87 84 90 82 95 94 90 91 90 90 31

AB vs ABA  (#12b vs #17) 19 12 4 19 18 18 18 20 26 20 21 5

AB vs ABAB  (#12b vs #18) 17 27 10 14 11 11 11 12 15 10 11 20

many repetitions of AB spells  (#12b vs #19) 11 100 100 19 11 12 12 13 6 6 8 100

slight shift of "ABABABABABABABABABAB"  (#19 vs #20) 0 0 10 0 82 1 79 84 0 0 0 100

overall repetition, ie ABC vs ABCABC  (#1 vs #21) 20 52 30 18 20 21 22 22 24 16 13 91

This approach gives a similar picture as in the previous section: there are still three distinct 
groups of metrics, “OM-like” (LEVII, HAM, OMAtr, DHD, ROUS and PCA), “CA-like” 
(CA and QHA) and NMS.

Compared to “OM-like” metrics, “CA-like” metrics seem more sensitive to insertions of 
one long spell or two long different spells, and to one or two replacements. Conversely,  
they are less sensitive to short insertions. This means that “CA-like” metrics more easily 
capture differences in the universe of states composing sequences, insofar as the states 
appearing in one sequence and not in the other correspond to long spells. Moreover, these 
metrics  are  a  little  less  sensitive  to  time  warping  and  shifts,  reversals,  swaps,  total 
permutations and repetitions: they attach less importance to the way and the order in which 
spells  unfold.  Lastly,  they consider  two highly unstable  and slightly shifted  sequences 
(subset #19 vs subset #20) as totally similar.

As one might expect from the previous stages of our inquiry,  NMS behaves noticeably 
differently from “OM-like” metrics. It is highly sensitive to repetitions of spells. It is also 
significantly more sensitive to two insertions, especially when short spells are inserted, i.e. 
when the sequence of spells composing the whole sequence differs, even if the differing 
spells have a short duration. Furthermore, NMS is less sensitive to differences in duration, 
i.e.  to  time  warping  and  shifts,  but  above  all  to  reversals,  swaps,  total  permutations, 
deletions and replacements. This appears harder to interpret: it seems that NMS's focus on 
sequence of spells  operate only in specific  cases, in particular  when “alien” spells  are 
short. More strangely, NMS considers ABC and FGH sequences (i.e. subset #1 vs subset 
#16) as rather similar, although they do not share any common state. On the other hand, 



two highly unstable and only slightly shifted sequences (subset #19 vs subset #20) are 
viewed as totally distinct.

Let us go a little further by comparing metrics from the “OM-like” group. Compared to 
Hamming distance (HAM), PCA is somewhat more sensitive to time warping and shifts, 
reversals, swaps and total permutations, deletions and long insertions. ROUS, OMAtr and 
DHD are almost equivalent to HAM, except that the two latter and, to a lesser extent, the 
former, capture replacements a bit more easily. Unsurprisingly, because of the use of indel 
operations which gives less importance to contemporaneousness, Levenshtein II distance 
(LEVII)  is  less  sensitive  then  HAM to  shifts  and more  notably  to  total  permutations. 
Moreover, it captures deletions and replacements better. But the main difference among 
this group regards a special case, that of the comparison between two unstable and slightly 
shifted sequences (subset #19 vs subset #20): while LEVII, OMAtr and PCA ignore the 
shift, HAM, DHD and ROUS consider the two sequences as highly distinct.

As far as “CA-like” metrics are concerned, CA and QHA do not differ in a significant way 
for any kind of pattern.

CONCLUSION

Since  the  1980s,  sequence  analysis  approaches  have  become widespread in  the  social 
sciences,  and  Optimal  Matching  has  been  the  leading  method.  But  OMA  has  been 
discussed and amended, and other metrics have been proposed. So there is a crucial need 
for comparisons between existing metrics. They are based on different statistical traditions 
(algorithmic culture, geometric data analysis, etc.) and all have specificities, particularly in 
the way they handle the various dimensions  of temporality,  e.g.  contemporaneousness, 
durations  or  order.  We  have  proposed  an  approach,  based  on  a  “reasoned”  set  of 
sequences, to uncover what kind of patterns each sequence analysis method is more able to 
fish for.

The results confirm what was already suspected: social science sequence data are strongly 
structured, in such a way that the main patterns they conceal will be uncovered by most of 
the metrics. But as marginal differences may be of importance, it is useful to understand 
precisely the kinds of sequences to which these differences are tied. We have revealed 
three groups of heavily converging metrics - 1) Levenshtein II, Hamming and Dynamic 
Hamming distances, OMA with data-driven substitution costs, Rousset et al.'s metric and 
Principal  Component  Analysis;  2)  Correspondence  Analysis  and Qualitative  Harmonic 
Analysis;  3)  Elzinga's  Number  of  Matching  Subsequences  –  as  well  as  the  small 
distinctions among them. This constitutes a further step towards a better knowledge of the 
wide range of available sequence analysis methods, so that scholars can pick the one that 
best suits their data design and inquiry objectives.
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APPENDIX 1 - Mantel correlation between dissimilarity matrices with varying optimal 
matching cost schemes, using occupational career data



APPENDIX 2 - Mantel correlation between dissimilarity matrices with different metrics, 
using occupational career data

 DUR QUA SEQ LEVII HAM OMAtr DHD ROUS PCA CA AHQ NMS
DUR 100 34,9 34,3 88,9 72,6 75,1 73,4 72,1 70,1 61,5 62,7 -1,8
QUA 34,9 100 82,4 37,5 28,4 30,6 30,3 27,8 20,1 28,8 29,3 67,5
SEQ 34,3 82,4 100 52,4 54,5 54,6 54,5 54,1 44,1 42,2 40,8 36,6
LEVII 88,9 37,5 52,4 100 97,3 97,6 97,4 95,6 95,4 54,5 53,6 1,3
HAM 72,6 28,4 54,5 97,3 100 99,9 100,0 98,9 97,1 56,6 54,9 4,0

OMAtr 75,1 30,6 54,6 97,6 99,9 100 99,9 98,7 97,1 56,6 55,1 3,7
DHD 73,4 30,3 54,5 97,4 100,0 99,9 100 98,8 97,1 56,5 54,9 3,8

ROUS 72,1 27,8 54,1 95,6 98,9 98,7 98,8 100 97,7 56,7 54,6 4,9
PCA 70,1 20,1 44,1 95,4 97,1 97,1 97,1 97,7 100 46,8 45,4 -1,8
CA 61,5 28,8 42,2 54,5 56,6 56,6 56,5 56,7 46,8 100 93,2 6,6

AHQ 62,7 29,3 40,8 53,6 54,9 55,1 54,9 54,6 45,4 93,2 100 4,0
NMS -1,8 67,5 36,6 1,3 4,0 3,7 3,8 4,9 -1,8 6,6 4,0 100
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