# Harpoon or maggot ?

#### A comparison of various metrics to fish for sequence patterns

Lausanne Conference On Sequence Analysis Wednesday 6th June, 2012

> Nicolas Robette, *Printemps (UVSQ-CNRS)* Xavier Bry, *I3M*, *Université de Montpellier II*

# **Sequence analysis**

- Trajectories built as sequences of states
- Computation of pairwise dissimilarities

   (algorithms = Optimal Matching Analysis, and many others)
  - $\rightarrow$  Distance matrix
    - → Clustering (HCA...; or reduction by MDS)
      - $\rightarrow$  Typology of trajectories

# Many dissimilarity metrics

- Related to 'sequence analysis' tradition (oma, etc.)...
- ... or to 'geometric data analysis' tradition

# **Optimal Matching Analysis** (1)

- Widely used in bioinformatics (DNA)
- Introduced in social sciences by Andrew Abbott (80's)
- **Principle**: measuring dissimilarity between pairs of sequences by calculating the cost of the transformation of one sequence into the other

See for example Macindoe & Abbott, 2004

# **Optimal Matching Analysis (2)**

- 3 elementary operations:
  - insertion
  - deletion
  - substitution
- each operation is assigned a **cost**
- the distance between two sequences is equal to the **minimal cost** needed to transform one sequence into the other

# **The choice of costs** (1)

Important issue in OMA (?):

#### • Substitution:

retains the temporal structure (**timing**) but distorts events (order)

#### • Insertion/deletion:

distort time

but retain order of events

# **The choice of costs** (2)

- **substitution cost** matrix :
  - according to theoretical assumptions: hierarchy of states...
  - data driven: transition likelihoods...
- insertion/suppression (*indel*) costs :
  - if order prevails  $\rightarrow$  low *indel* /substitution
  - if timing prevails  $\rightarrow$  high *indel* /substitution

# Elzinga's metrics (2003;2008)

- **Criticism :** OMA doesn't take order into account (substitution of A to B or B to A are equivalent)
- Several alternatives :
  - Longer common prefix (LCP)
  - Longer common subsequence (LCS)
  - Number of common subsequences (NCS)
  - Number of matching subsequences (NMS)

- ...

# Lesnard's 'Dynamic Hamming' (2010)

- **Criticism**: Transition likelihoods are timedependant
- Principle:
  - no insertion/deletion
  - substitution costs computed for each time point
- Applications to time-use diary data

# Rousset et al (2012)

- Principle:
  - based on transition likelihoods
  - possibility of a delay cost

### **'Geometric Data Analysis' metrics** (1)

#### A fictitious example of school-to-work transition:

S = studies

U = unemployment

J = job

| 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|----|----|----|----|----|----|----|----|
| S  | S  | S  | U  | J  | J  | J  | J  |

### **'Geometric Data Analysis' metrics** (2)

| 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|----|----|----|----|----|----|----|----|
| S  | S  | S  | U  | J  | J  | J  | J  |

#### • Indicator matrix

| 18S | 18U | 18J | <br>25S | 25U | 25J |
|-----|-----|-----|---------|-----|-----|
| 1   | 0   | 0   | <br>0   | 0   | 1   |

PCA → Euclidean distance CA →  $\chi^2$  distance (see Grelet, 2002)

#### → duration and timing

### **'Geometric Data Analysis' metrics** (3)

| 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|----|----|----|----|----|----|----|----|
| S  | S  | S  | U  | J  | J  | J  | J  |

• Summarized calendar (Qualitative Harmonic Analysis)

| 18-20 S | 18-20 U | 18-20 J | 21-25 S | 21-25 U | 21-25 J |
|---------|---------|---------|---------|---------|---------|
| 1       | 0       | 0       | 0       | 0,2     | 0,8     |

CA ->  $\chi^2$  distance (see Robette & Thibault, 2008)

#### → duration and timing

(timing less precise, but less sensitive to « shifts »)

 $\rightarrow$  allows to « weight » sub-periods

# A few existing comparisons

- **OMA with different cost schemes**: Abbott & Hrycak 1990; Chan 1995; Anyadikes-Danes & McVicar 2002 & 2010 ...
- **OMA vs other metric**: Lesnard 2010 (DHD); Robette & Thibault 2008 (QHA); Aisenbrey & Fasang 2010 (DHD,NMS) ...
- Geometric Data Analysis: Grelet 2002

→ **broad agreement**: "minor analytic decisions are unlikely to drastically change results" (Abbott & Hrycak, 1990)

### Limitations

• Only a few metrics at a time

• Based on one set of empirical data

• Examination of clusters

# **Our empirical protocol**

• A "reasoned" set of simulated sequences (+ one empirical set as " control")

• Correlation b/w dissimilarity matrices

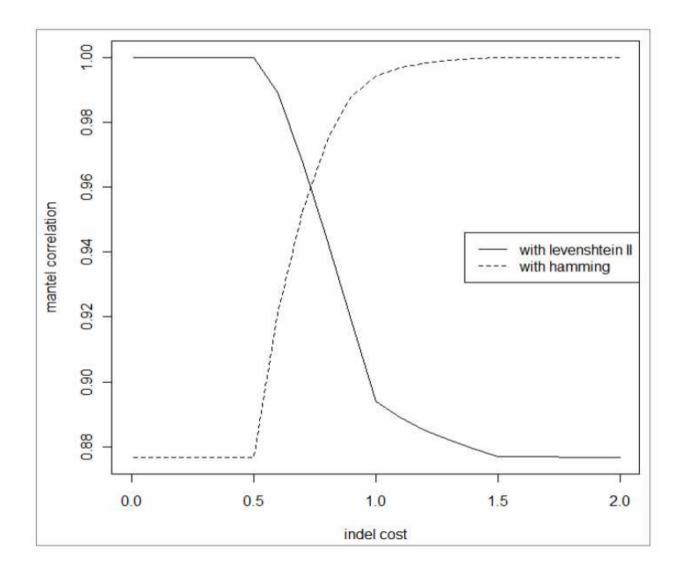
• Avg distances within / between subsets of simulated sequences

# A "reasoned" sequence data set

- An artificial set (N=854), designed to contain the various kinds of **regularities** / **differences**: shifts, swaps, insertions, deletions, replacements, repetitions of spells (*Barban & Billari*, 2011)
- Examples:
- **1. Time warping**: subset of sequences A-B-C with varying durations in A, B and C
- 2. Shifts: A-B-C with B spell of fixed length equal to 6 and varying durations in A and C
- 3. Reversal: Initial sequences (subset #1) in reversed order, i.e. C-B-A
- **4. Swaps**: Initial sequences (subset #1) with B and C swapped (i.e. A-C-B) or A and B swapped (i.e. B-A-C)
- 5. Etc...

# An empirical sequence data set

- *Biographies et entourage* event-history survey (INED, 2001)
- Occupational careers of 1421 men
- 37 years, from 14 to 50
- 9 states:


o farmers, self-employed, higher-level intellectual occupations, intermediate occupations, clerical and sales workers, manual workers,

0 student,

o military conscripts,

*o other inactivity* 

#### **Correlation b/w dissimilarity matrices** with varying *indel* (subst=1)



# The set of metrics

- Hamming, ie OMA with no indel (HAM)
- Levenshtein II, ie OMA with no subst (LEVII)
- OMA with data driven subst & high indel (OMAtr)
- Dynamic Hamming Distance (DHD)
- Rousset's alternative (ROUS)
- Elzinga's # of matching subseq. (NMS)
- Indicator matrix with CA (CA)
- Indicator matrix with PCA (PCA)
- Summarized calendar (QHA)
- 3 "control" metrics: duration (DUR), quantum (QUA), sequence = LLCS (SEQ)

### **Correlation b/w dissimilarity matrices**

|       | DUR  | QUA  | SEQ  | LEVII | HAM  | OMAtr | DHD  | ROUS | PCA  | CA   | QHA  | NMS  |
|-------|------|------|------|-------|------|-------|------|------|------|------|------|------|
| DUR   | 100  | 34,9 | 34,3 | 88,9  | 72,6 | 75,1  | 73,4 | 72,1 | 70,1 | 61,5 | 62,7 | -1,8 |
| QUA   | 34,9 | 100  | 82,4 | 37,5  | 28,4 | 30,6  | 30,3 | 27,8 | 20,1 | 28,8 | 29,3 | 67,5 |
| SEQ   | 34,3 | 82,4 | 100  | 53,2  | 46,6 | 49,1  | 49,3 | 45,0 | 36,8 | 45,8 | 45,9 | 52,1 |
| LEVII | 88,9 | 37,5 | 53,2 | 100   | 87,7 | 90,4  | 89,2 | 86,5 | 83,4 | 75,1 | 75,8 | -1,2 |
| HAM   | 72,6 | 28,4 | 46,6 | 87,7  | 100  | 99,3  | 99,7 | 99,2 | 96,9 | 72,4 | 72,0 | -0,6 |
| OMAtr | 75,1 | 30,6 | 49,1 | 90,4  | 99,3 | 100   | 99,6 | 98,2 | 95,4 | 75,7 | 75,5 | -1,0 |
| DHD   | 73,4 | 30,3 | 49,3 | 89,2  | 99,7 | 99,6  | 100  | 98,6 | 95,8 | 75,5 | 75,2 | -0,8 |
| ROUS  | 72,1 | 27,8 | 45,0 | 86,5  | 99,2 | 98,2  | 98,6 | 100  | 97,9 | 70,7 | 70,2 | -0,3 |
| PCA   | 70,1 | 20,1 | 36,8 | 83,4  | 96,9 | 95,4  | 95,8 | 97,9 | 100  | 63,1 | 62,5 | -6,2 |
| CA    | 61,5 | 28,8 | 45,8 | 75,1  | 72,4 | 75,7  | 75,5 | 70,7 | 63,1 | 100  | 99,6 | -3,8 |
| QHA   | 62,7 | 29,3 | 45,9 | 75,8  | 72,0 | 75,5  | 75,2 | 70,2 | 62,5 | 99,6 | 100  | -3,7 |
| NMS   | -1,8 | 67,5 | 52,1 | -1,2  | -0,6 | -1,0  | -0,8 | -0,3 | -6,2 | -3,8 | -3,7 | 100  |

#### **Scaled ranked distances b/w sequences**

| Patterns                                                    | DUR | QUA | SEQ | LEVII | HAM | OMAtr | DHD | ROUS | PCA | CA | QHA | NMS |
|-------------------------------------------------------------|-----|-----|-----|-------|-----|-------|-----|------|-----|----|-----|-----|
| time warping (#1 vs #1)                                     | 20  | 0   | 0   | 14    | 12  | 13    | 13  | 13   | 18  | 11 | 11  | 2   |
| shifts (#2 vs #2)                                           | 10  | 0   | 0   | 6     | 14  | 15    | 15  | 15   | 19  | 11 | 11  | 1   |
| reversal, ie ABC vs CBA (#1 vs #3)                          | 20  | 0   | 50  | 44    | 50  | 55    | 55  | 55   | 64  | 43 | 45  | 23  |
| swaps, ie ABC vs ACB or BAC (#1 vs #4)                      | 20  | 0   | 10  | 24    | 25  | 28    | 27  | 28   | 33  | 21 | 21  | 8   |
| total permutation, ie ABC vs CAB or BCA (#1 vs #5)          | 20  | 0   | 10  | 31    | 52  | 51    | 55  | 56   | 63  | 39 | 39  | 15  |
| 1 insertion of a short D spell (#1 vs #6)                   | 22  | 12  | 4   | 15    | 14  | 15    | 15  | 15   | 18  | 11 | 12  | 9   |
| 1 insertion of a long D spell (#1 vs #7)                    | 44  | 12  | 4   | 35    | 35  | 39    | 37  | 38   | 41  | 44 | 43  | 29  |
| 2 insertions of short D spells (#1 vs #8)                   | 24  | 27  | 10  | 17    | 16  | 17    | 17  | 17   | 18  | 11 | 12  | 55  |
| 2 insertions of long D spells (#1 vs #9)                    | 61  | 27  | 10  | 55    | 52  | 56    | 54  | 56   | 61  | 54 | 54  | 68  |
| 2 insertions of short D and E spells $(#1 \text{ vs } #10)$ | 26  | 27  | 10  | 18    | 18  | 19    | 19  | 19   | 20  | 14 | 15  | 52  |
| 2 insertions of long D and E spells (#1 vs #11)             | 61  | 27  | 10  | 55    | 52  | 56    | 55  | 56   | 60  | 73 | 72  | 60  |
| 1 deletion, ie ABC vs AB (#1 vs #12b)                       | 33  | 12  | 4   | 26    | 24  | 26    | 25  | 26   | 34  | 19 | 20  | 5   |
| 1 deletion, ie ABC vs AC or BC (#1 vs #12a)                 | 34  | 12  | 4   | 27    | 21  | 23    | 23  | 23   | 29  | 19 | 20  | 6   |
| 2 deletions, ie ABC vs A, B or C (#1 vs #13)                | 56  | 27  | 10  | 50    | 34  | 38    | 37  | 37   | 49  | 32 | 34  | 7   |
| 1 replacement, ie ABC vs ABF, AFC or FBC (#1 vs #14)        | 42  | 27  | 10  | 35    | 27  | 31    | 31  | 29   | 31  | 46 | 49  | 17  |
| 2 replacements, ie ABC vs AFG, FBG or FGC (#1 vs #15)       | 69  | 65  | 50  | 64    | 49  | 57    | 56  | 53   | 51  | 69 | 71  | 28  |
| 3 replacements, ie ABC vs FGH (#1 vs #16)                   | 90  | 87  | 84  | 90    | 82  | 95    | 94  | 90   | 91  | 90 | 90  | 31  |
| AB vs ABA (#12b vs #17)                                     | 19  | 12  | 4   | 19    | 18  | 18    | 18  | 20   | 26  | 20 | 21  | 5   |
| AB vs ABAB (#12b vs #18)                                    | 17  | 27  | 10  | 14    | 11  | 11    | 11  | 12   | 15  | 10 | 11  | 20  |
| many repetitions of AB spells (#12b vs #19)                 | 11  | 100 | 100 | 19    | 11  | 12    | 12  | 13   | 6   | 6  | 8   | 100 |
| slight shift of "ABABABABABABABABABAB" (#19 vs #20)         | 0   | 0   | 10  | 0     | 82  | 1     | 79  | 84   | 0   | 0  | 0   | 100 |
| overall repetition, ie ABC vs ABCABC (#1 vs #21)            | 20  | 52  | 30  | 18    | 20  | 21    | 22  | 22   | 24  | 16 | 13  | 91  |

# "OM-like" vs "CA-like"

- "CA-like" metrics more easily capture differences in the universe of states composing sequences, insofar as the states appearing in one sequence and not in the other correspond to long spells (*ie insertions of one long spell or two long different spells, one or two replacements*)
- "OM-like" metrics attach more importance to the way and the order in which spells unfold (*ie time warping and shifts, reversals, swaps, total permutations and repetitions*)

# **"OM-like" vs NMS**

- **NMS** more sensitive to differences in the sequence of spells, even if the differing spells have a short duration (*ie repetitions of spells, two insertions especially short ones*)
- **NMS**'s focus on sequence of spells operates only in specific cases, in particular when "alien" spells are short (*ie NOT time warping and shifts, but above all reversals, swaps, total permutations, deletions and replacements*)

# Among "OM-like"

- **PCA** is somewhat more sensitive than **Hamming** to *time warping and shifts, reversals, swaps and total permutations, deletions and long insertions.*
- Levenshtein II gives less importance to contemporaneousness (shifts and permutations), captures deletions and replacements better.

# In a nutshell

Social science sequence data are strongly structured
→ the main patterns uncovered by most of the metrics

- But as marginal differences may be of importance
- → three groups of heavily converging metrics, with small distinctions among them

# References

- webpage: <u>http://nicolas.robette.free.fr/Publis.htm</u>
- Robette N., Bry X., 2012, « Harpoon or bait? A comparison of various metrics to fish for sequence patterns », forthcoming in *Bulletin of Sociological Methodology*
- Robette N., 2010, *Explorer et décrire les parcours de vie : les typologies de trajectoires*, Paris : Ceped (série « les clefs pour »)
- Robette N., Thibault N., 2008, « Comparing qualitative harmonic analysis and optimal matching. An exploratory study of occupational trajectories », *Population-E*, 64(3), p. 533-556.