A Flexible Metric

LaCOSA 2012

Cees H. Elzinga

PARIS/SILC Research Group Vrije Universiteit Amsterdam

A Flexible Metric – p. 1/41

A Joint Enterprise with

Dr. Matthias Studer, Faculty of Economics and Social Sciences, University of Geneva

- Prof. Hui Wang, Computer Science Research Institute, Ulster University
- Purpose: an SMR-paper on comparing metrics for SA

A Flexible Metric – p. 2/41

Sequence Comparison Methods

- Optimal Matching
 - advantages:
 - well known
 - adaptable edit cost
 - easy algorithm, readily available
 - disadvantages:
 - unequal sequence lengths problematic
 - IIcs (OM with unit-cost) crude
- Feature Vectors

Sequence Comparison Methods

- Optimal Matching
- Feature Vectors
 - advantages:
 - different features possible
 - handles sequences of unequal length
 - disadvantages:
 - generally not well understood
 - "no adaptable edit cost" (Hollister)

A Flexible Metric – p. 4/41

Lecture's Purpose

- Discuss General methodology of feature vectors
- Explain basic algorithm: the Grid
- A flexible representation: weigh for
 - subsequence length
 - subsequence gaps
 - limit gap-size
 - penalize gap-size
 - subsequence characters
 - "edit cost": soft-matching of states
 - durations or run-lengths
 - Example(s)

Sequence Comparison

- To classify
 - sort into groups:
 - that are as different as possible
 - that are as homogeneous as possible
 - collect similar things
 - things that share many features
- To explain (dis)similarity

Simple Sequence Structure

- Sequences are very similar
 - same small alphabet
 - same subsequences e.g. "married children"
 - same durations e.g. "education"
- Classification is subtle, takes many features

A Flexible Metric – p. 7/41

Feature Vectors: Principles

- select *d* features or properties $\{p_1, \ldots, p_d\}$
- \bullet map each object x to a *d*-vector x

•
$$\mathbf{x} \mapsto \mathbf{x} = (x_1, \dots, x_d)$$

 \checkmark determine the value of the x-coordinates x_i

•
$$x_i = \begin{cases} f(p_i) & \text{if object } x \text{ has property } p_i \\ 0 & \text{otherwise} \end{cases}$$

• simple:
$$f(p_i) = 1$$
, all *i* (feature "on")

Example: Classifying Beetles

- Step 1 : Select relevant beetle-properties as vector-coordinates
- **Step 2** : Map different beetles onto different vectors
- **Step 3** : Calculate distances in beetle-space
- Step 4a: If beetles are close, put them in the same class
- **Step 4b**: Else, put them in different classes
- Step 5 : Be happy or try to "explain" the classes

Simple Beetle Morphology

Many Different Beetles

A Flexible Metric – p. 11/41

Binary Beetle Features

Feature	"1"	"0"	discriminates
Long Antennae	yes	no	yes
Compound Eyes	yes	no	yes
Functional Wings	yes	no	yes
6 legs	yes	no	no
Protruding Mouthparts	yes	no	yes
Reads Dickens	yes	no	no
Rowing Legs	yes	no	yes

- 7 binary features suffices to discern $2^7 = 524$ distinct species
- there exist $10^6 10^8$ distinct species
 - requires 25-30 binary features

A Flexible Metric – p. 12/41

4 Beetles in Beetle Space $\{0, 1\}^7$

Features	a	\mathbf{b}	С	d
Antennae	1	0	1	1
Eyes	0	1	0	1
Wings	1	1	0	0
6 legs	1	1	1	1
Mouthparts	1	0	0	1
Reads Dickens	0	0	0	0
Rowing Legs	0	1	0	0

- inner product $\mathbf{a'b} = \sum_i a_i b_i = 2$ counts common features
- inner product $\mathbf{a}'\mathbf{a} = \sum_i a_i^2 = 5$ counts features

Beetle Feature Vectors

• beetle feature space-matrix $\mathbf{X} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$

• Gram-matrix
$$\mathbf{X'X} = \begin{pmatrix} 4 & 2 & 2 & 3 \\ 2 & 4 & 1 & 2 \\ 2 & 1 & 2 & 2 \\ 3 & 2 & 2 & 4 \end{pmatrix}$$
, inner products

beetle vectors have

• length:
$$\|\mathbf{a}\| = \sqrt{\mathbf{a}'\mathbf{a}} = \sqrt{\sum_i a_i^2} = \sqrt{4} = 2$$
 ("st. dev.")

• distance: d(a, b) = a'a + b'b - 2a'b = 4

• angle:
$$\angle(a,b) = \frac{\mathbf{a'b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|} = \frac{2}{\sqrt{4 \cdot 4}} = 0.5$$
 ("correlation")

Careers in Career-Space

- ▶ Alphabet $A = \{a, b, c\}$ (labor market states)
- all strings \mathcal{A}^* : set of all possible careers
 - career x = abbcaaccbbaaaab...
 - \checkmark careers are concatenations of symbols from ${\cal A}$
- career features: all sub-careers
 - a, ac, abacb, ...
- map careers onto career-feature vectors

2 Careers in Career-Space

careers:
$$x = abac \mapsto x$$
, $y = bacb \mapsto y$

subcareers	x	У
a	1	1
÷	•	÷
aa	1	0
ab	1	1
÷	:	÷
aba	1	0
÷	•	÷
acb	0	1
÷	•	÷

each possible subsequence is a feature

A Flexible Metric – p. 16/41

Feature Vectors: Problems I

feature selection: relevance?

- no beetles read Dickens (not applicable)
- some beetles have horns (not selected)
- all beetles have 6 legs (non-discriminating)

feature selection: how many are necessary/acceptable?

- $\{0,1\}^d$ -vectors generate at most 2^d classes
- dimensionality of subsequence-space is colossal: countably infinite

A Flexible Metric – p. 17/41

Feature Vectors: Problems II

- feature selection: relevance?
- feature selection: how many are necessary/acceptable?
- calculating inner products
 - space/time-consuming because of size
 - "vector-avoiding" algorithms: "Kernels"
- Gram-matrix tends to be orthogonal: big diagonal
 - objects have everything in common with themselves
 - objects have little in common with other objects
 - compress sequences to shorter ones

A Flexible Metric – p. 18/41

Constructing Sequence Vectors

- \mathcal{A} : alphabet; \mathcal{A}^* : set of all sequences over \mathcal{A}
- ssign an integer, a rank number r(u) to each $u \in (A)^* = \{u, v, w, \ldots\}$

define vectors $\mathbf{x} = (x_1, x_2, \ldots)$ for each $x \in \mathcal{A}^*$ such that

$$\mathbf{x}_{r(u)} = \begin{cases} f(u, x) & \text{if } u \sqsubseteq x \\ \\ 0 & \text{otherwise} \end{cases}$$

- f(u, x): "anything we like to use"
 - (as long as we can compute inner products x'y)

distance:
$$d(x,y) = \mathbf{x'x} + \mathbf{y'y} - 2\mathbf{x'y}$$

similarity:
$$s(x,y) = \mathbf{x'y}/(\mathbf{x'x} + \mathbf{y'y} - \mathbf{x'y})$$

Constructing Sequence Vectors

$$\mathbf{x}_{r(u)} = \begin{cases} f(u,x) & \text{if } u \sqsubseteq x \\ \\ 0 & \text{otherwise} \end{cases}$$

subsequence

weighing	condition	f(u,x)
none (commonness)	$u \sqsubseteq x$	1
embedding frequency	$u \sqsubseteq x$	$ x _u$
length	$u \sqsubseteq x$	$\ell(u)^p, \ p>1$
limit gap-size	$(u \sqsubseteq x) \wedge gaps < d$	any
states	$u \sqsubseteq x$	$\prod_i w(u_i)$
duration	$u \sqsubseteq x$	$\sum_i t(u_i)$
soft-matching	$u \sqsubseteq x$	any, with $\mathbf{x'y} = \mathbf{x'Sy}$
any subset sumultaneously		

any subset sumultaneously

Computations in the Sequence Grid

A Flexible Metric – p. 21/41

Embedding Frequency

•
$$x = abac$$
, $u = ac = x_1x_4 = x_3x_4$, $|x|_u = 2$

• $\mathbf{x}'\mathbf{y}$ counts "matching embeddings": $\sum_{u} |x|_{u} \cdot |y|_{u}$

- when repetition of patterns is important:
 - Iabor market careers
 - criminal careers
 - animal behavior sequences

$$\mathbf{x}_{r(u)} = \begin{cases} |x|_u & \text{if } u \sqsubseteq x \\ 0 & \text{otherwise} \end{cases}$$

Length

•
$$x = abac$$
, $u = ab$, $\ell(u) = 2$

- expect many short common subsequences
- focus on longer subsequences
- OM with standard costing:

$$d(x,y) = \ell(x) + \ell(y) - 2llcs(x,y)$$

implementation $\mathbf{x}'\mathbf{y} = \sum_k k^p \phi_k$ or more sophisticated

$$\mathbf{x}_{r(u)} = \begin{cases} \ell(u)^p \cdot |x|_u & \text{if } u \sqsubseteq x \\ 0 & \text{otherwise} \end{cases}$$

Limiting the Gap-size

$$\phi_k = \sum_{ij} m_{ij}^k, \quad \mathbf{x'y} = \sum_k \phi_k = 5 + \mathbf{3} + 1 = 9$$

Weighing States

some states may be more significant than others

- unemployed
- infected
- Assign a weight $w(a_i)$ to each state in $\mathcal{A} = \{a_1, a_2, \ldots\}$
- Calculate the weight of u as $\prod_i w(u_i)$

•
$$w(abac) = w(a) \cdot w(b) \cdot w(a) \cdot w(c)$$

Weighing the States

$$x = abac, \quad y = bacb$$

$$w(a) = 2, w(b) = 1, w(c) = 3$$

$$\mathbf{M}^{1} = \begin{pmatrix} 2 & & \\ 1 & & 1 \\ & 2 & \\ & & 3 \end{pmatrix} \quad \mathbf{M}^{2} = \begin{pmatrix} 8 & & \\ 6 & & 0 \\ & 6 & \\ & & 0 \end{pmatrix} \quad \mathbf{M}^{3} = \begin{pmatrix} 0 & & \\ 6 & & 0 \\ & 0 & \\ & & 0 \end{pmatrix}$$

$$\phi_k = \sum_{ij} m_{ij}^k, \quad \mathbf{x'y} = \sum_k \phi_k = 9 + 20 + 6 = 35$$

 $\mathbf{x}_{r(u)} = \begin{cases} w(u) \cdot |x|_u & \text{if } u \sqsubseteq x \\ \\ 0 & \text{otherwise} \end{cases}$

A Flexible Metric - p. 26/41

Duration

•
$$x = x_1 x_2 x_3 \dots$$
, $t_x = t_1 t_2 t_3 \dots$

time, pitch, voltage, speed *any* quantifiable state-property

•
$$t(x) = t_1 + t_2 + t_3 + \dots$$

•
$$\mathbf{x}_{r(u)} = \begin{cases} t(u)w(u)\ell(u)^p \cdot |x|_u & \text{if } u \sqsubseteq x \\ 0 & \text{otherwise} \end{cases}$$

duration is treated like any other weight

Soft-Matching ("indel cost")

"Hollister's Problem": some states are more different than others

(Single, Married) vs (Cohabitation, Married)

coordinates are "hard": either 0 or >0

• $\mathbf{x'y} = \sum_i x_i y_i$, $x_i = 0$ and/or $y_i = 0 \Rightarrow x_i y_i = 0$

Inner product compares values of equally indexed coordinates

- never "compares" subsequences containing "Married" with subsequences containing "Single"
- In OM: substitution cost compare different states

Soft-Matching ("indel cost")

Define state-similarities $\mathbf{M} = (m_{ij}), 0 \le m_{ij} \le 1, m_{ii} = 1, m_{ij} = m_{ji}$

calculate $\mathbf{x}' \mathbf{M} \mathbf{y}$ instead of $\mathbf{x}' \mathbf{y}$

•
$$\mathbf{x'My} = \sum_{i} x_i y_i + 2 \sum_{i \neq j} x_i \cdot m_{ij} \cdot y_j$$

- Euclidean distance in "elliptical" space
- implementation in Grid-algorithm: $\mathbf{M}^1 \leftarrow \mathbf{M}$

A Flexible Metric – p. 29/41

Unit-circles in Elliptical Space

A Flexible Metric – p. 30/41

Unit-Sphere in Elliptical Space

M-Elliptical 1-sphere

A Flexible Metric – p. 31/41

An Application

- Data described in
 - Müller, Gabadinho, Ritschard & Studer: Extracting knowledge from life courses: clustering and visualization, *Data Warehousing and Knowledge Discovery*, Lecture Notes in Computer Science, 2008, Volume 5182/2008, 176-185
- 4318 individuals, born 1909-1972, \geq 30 years old, retrospective data
 - 4 events: L(eft parental home), (1st) M(arriage), (1st) C(child), (1st) D(ivorce)
 - 8 states: P(no event, still with Parents), L, M, LM, C, LC, LMC, D

data example:	birth	L	Μ	С	D
uala example.	1974	1992	1994	1996	-

sequence example:

An Application

		Ρ	L	Μ	LM	С	LC	LMC	D
	Р	0							
	L	.25	0						
	М	.38	.62	0					
OM-cost matrix C:	LM	.50	.25	.38	0				
	С	.25	.50	.38	.75	0			
	LC	.50	.25	.62	.50	.25	0		
	LMC	.75	.50	.38	.25	.50	.25	0	
	D	.75	.74	.38	.50	.75	.75	.50	0
	OM-cost matrix C:	P L M OM-cost matrix C: LM C LC LMC D	P 0 L .25 M .38 OM-cost matrix C: LM .50 C .25 LC .50 LC .50 LMC .75 D .75	P 0 L .25 0 M .38 .62 OM-cost matrix C: LM .50 .25 C .25 .50 LC .50 .25 LMC .50 .25 LMC .75 .50 D .75 .74	P L M P 0 1 1 L .25 0 0 M .38 .62 0 OM-cost matrix C: LM .50 .25 .38 C .25 .50 .38 LC .50 .25 .62 LMC .75 .50 .38 D .75 .74 .38	P L M LM P 0 - - L .25 0 - - M .38 .62 0 - OM-cost matrix C: LM .50 .25 .38 0 C .25 .50 .38 .75 LC .50 .25 .62 .50 LMC .75 .50 .38 .25 D .75 .74 .38 .50	P L M LM C P 0 - - - - L .25 0 - - - M .38 .62 0 - - OM-cost matrix C: LM .50 .25 .38 0 - C .25 .50 .38 .75 0 LC .50 .25 .62 .50 .25 LMC .75 .50 .38 .25 .50 D .75 .74 .38 .50 .75	P L M LM C LC P 0 - - - - - L .25 0 - - - - M .38 .62 0 - - - OM-cost matrix C: LM .50 .25 .38 0 - C .25 .50 .38 .75 0 - LC .50 .25 .62 .50 .25 0 LC .50 .25 .62 .50 .25 0 LMC .75 .50 .38 .25 .50 .25 D .75 .74 .38 .50 .75 .75	P L M LM C LC LMC P 0

soft-matching matrix $\mathbf{M} = \mathbf{1} - \mathbf{C}$: $m_{ij} = 1 - c_{ij}$

A Flexible Metric – p. 33/41

Finding Clusters (PAM) with d_{OM}

N clusters

6 clusters seems optimal

A Flexible Metric - p. 34/41

OM-cluster profiles: Chronogrammes

OM - (P,8)-(M,8)

ParentLeftMarried	 Left/Married Child Left/Child 	 Left/Married/Child Divorced
---	---	--

A Flexible Metric - p. 35/41

OM-cluster profiles: order-plots

A Flexible Metric - p. 36/41

An alternative clustering

Using subsequences, weighed for

- duration
- embedding frequency

and employing soft-matching

A Flexible Metric – p. 37/41

Cluster profiles: Chronogrammes

a29

a20

8

8

a15

NMSDUR - (P,7)-(LM,3)-(D,6)

a17 a19 a21 a23 a25 a27

A Flexible Metric - p. 38/41

Cluster profiles: order-plots

NMSDUR - (P,8)-(LMC,8) NMSDUR - (P,6)-(L,6)-(LM,4) NMSDUR - (P,6)-(L,5)-(LMC,5) NMSDUR - (P,9)-(LM,2)-(LMC,5) .up = NMSDUR - (P,8)-(LM10380); = NM26DUR - (P,6)-(L,0);=0/uh/4,4)NMS196R - (P,6)-(L,5);=0/uh/6=D15B - (P,9)-(LM,2)-(LMC Р Р Р Ρ married married married married left left left left divorced divorced divorced divorced child child child child 1 3 4 5 2 3 4 5 2 3 4 5 1 2 3 4 5 2 1 order position order position order position order position

A Flexible Metric – p. 39/41

Clustering Quality

A Flexible Metric - p. 40/41

Choosing Distance is Not Trivial !

Cramer's V: Soft-Matching & OM

	emb	emb/dur	OM
emb	1.0		
emb/dur	.67	1.0	
OM	.84	.65	1.0

THANK YOU

A Flexible Metric – p. 41/41