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Purpose: an SMR-paper on comparing metrics for SA
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Sequence Comparison Methods

Optimal Matching

advantages:

well known
adaptable edit cost
easy algorithm, readily available

disadvantages:

unequal sequence lengths problematic
llcs (OM with unit-cost) crude

Feature Vectors
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Sequence Comparison Methods

Optimal Matching

Feature Vectors

advantages:

different features possible
handles sequences of unequal length

disadvantages:

generally not well understood
“no adaptable edit cost” (Hollister)
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Lecture’s Purpose

Discuss General methodology of feature vectors

Explain basic algorithm: the Grid

A flexible representation: weigh for

subsequence length

subsequence gaps
limit gap-size
penalize gap-size

subsequence characters

“edit cost”: soft-matching of states

durations or run-lengths

Example(s)
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Sequence Comparison

To classify

sort into groups:

that are as different as possible
that are as homogeneous as possible

collect similar things

things that share many features

To explain (dis)similarity
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Simple Sequence Structure

Sequences are very similar

same small alphabet

same subsequences e.g. "married - children"

same durations e.g. "education"

Classification is subtle, takes many features
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Feature Vectors: Principles

select d features or properties {p1, . . . , pd}

map each object x to a d-vector x

x 7→ x = (x1, . . . , xd)

determine the value of the x-coordinates xi

xi =











f(pi) if object x has property pi

0 otherwise

simple: f(pi) = 1, all i (feature “on”)
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Example: Classifying Beetles

Step 1 : Select relevant beetle-properties as
vector-coordinates

Step 2 : Map different beetles onto different vectors

Step 3 : Calculate distances in beetle-space

Step 4a: If beetles are close, put them in the same
class

Step 4b: Else, put them in different classes

Step 5 : Be happy or try to “explain” the classes
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Simple Beetle Morphology
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Many Different Beetles
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Binary Beetle Features

Feature “1” “0” discriminates
Long Antennae yes no yes
Compound Eyes yes no yes
Functional Wings yes no yes
6 legs yes no no
Protruding Mouthparts yes no yes
Reads Dickens yes no no
Rowing Legs yes no yes

7 binary features suffices to discern 27 = 524 distinct species

there exist 106 − 108 distinct species

requires 25-30 binary features
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4 Beetles in Beetle Space{0, 1}7

Features a b c d

Antennae 1 0 1 1
Eyes 0 1 0 1
Wings 1 1 0 0
6 legs 1 1 1 1
Mouthparts 1 0 0 1
Reads Dickens 0 0 0 0
Rowing Legs 0 1 0 0

inner product a′b =
∑

i aibi = 2 counts common features

inner product a′a =
∑

i a
2
i = 5 counts features
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Beetle Feature Vectors

beetle feature space-matrix X = (a,b, c,d)

Gram-matrix X′X =











4 2 2 3

2 4 1 2

2 1 2 2

3 2 2 4











, inner products

beetle vectors have

length: ‖a‖ =
√
a′a =

√
∑

i a
2
i =

√
4 = 2 (“st. dev.”)

distance: d(a, b) = a′a+ b′b− 2a′b = 4

angle: ∠(a, b) = a
′
b

‖a‖·‖b‖ = 2√
4·4 = 0.5 (“correlation”)
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Careers in Career-Space

Alphabet A = {a, b, c} (labor market states)

all strings A∗: set of all possible careers

career x = abbcaaccbbaaaab . . .

careers are concatenations of symbols from A

career features: all sub-careers

a, ac, abacb, . . .

map careers onto career-feature vectors

A Flexible Metric – p. 15/41



2 Careers in Career-Space

careers: x = abac 7→ x, y = bacb 7→ y

subcareers x y

a 1 1

...
...

...

aa 1 0

ab 1 1

...
...

...

aba 1 0

...
...

...

acb 0 1

...
...

...

each possible subsequence is a feature
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Feature Vectors: Problems I

feature selection: relevance?

no beetles read Dickens (not applicable)

some beetles have horns (not selected)

all beetles have 6 legs (non-discriminating)

feature selection: how many are necessary/acceptable?

{0, 1}d-vectors generate at most 2d classes

dimensionality of subsequence-space is colossal: countably infinite
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Feature Vectors: Problems II

feature selection: relevance?

feature selection: how many are necessary/acceptable?

calculating inner products

space/time-consuming because of size

“vector-avoiding” algorithms: “Kernels”

Gram-matrix tends to be orthogonal: big diagonal

objects have everything in common with themselves

objects have little in common with other objects

compress sequences to shorter ones
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Constructing Sequence Vectors

A: alphabet; A∗: set of all sequences over A

assign an integer, a rank number r(u) to each u ∈ (A)∗ = {u, v, w, . . .}

define vectors x = (x1, x2, . . .) for each x ∈ A∗ such that

xr(u) =







f(u, x) if u ⊑ x

0 otherwise

f(u, x): “anything we like to use”

(as long as we can compute inner products x′y)

distance: d(x, y) = x′x+ y′y − 2x′y

similarity: s(x, y) = x′y/(x′x+ y′y − x′y)
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Constructing Sequence Vectors

xr(u) =







f(u, x) if u ⊑ x

0 otherwise

subsequence

weighing condition f(u, x)

none (commonness) u ⊑ x 1

embedding frequency u ⊑ x |x|u

length u ⊑ x ℓ(u)p, p > 1

limit gap-size (u ⊑ x) ∧ gaps < d any

states u ⊑ x
∏

i w(ui)

duration u ⊑ x
∑

i t(ui)

soft-matching u ⊑ x any, with x′y = x′Sy

any subset sumultaneously
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Computations in the Sequence Grid
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∑
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Embedding Frequency

x = abac, u = ac = x1x4 = x3x4, |x|u = 2

x′y counts “matching embeddings”:
∑

u |x|u · |y|u

when repetition of patterns is important:

labor market careers
criminal careers
animal behavior sequences

xr(u) =











|x|u if u ⊑ x

0 otherwise
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Length

x = abac, u = ab, ℓ(u) = 2

expect many short common subsequences

focus on longer subsequences

OM with standard costing:

d(x, y) = ℓ(x) + ℓ(y)− 2llcs(x, y)

implementation x′y =
∑

k k
pφk or more sophisticated

xr(u) =







ℓ(u)p · |x|u if u ⊑ x

0 otherwise
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Limiting the Gap-size
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Weighing States

some states may be more significant than others

unemployed
infected

Assign a weight w(ai) to each state in A = {a1, a2, . . .}

Calculate the weight of u as
∏

i w(ui)

w(abac) = w(a) · w(b) · w(a) · w(c)
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Weighing the States

x = abac, y = bacb

w(a) = 2, w(b) = 1, w(c) = 3
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ij , x′y =

∑
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φk = 9 + 20 + 6 = 35

xr(u) =







w(u) · |x|u if u ⊑ x

0 otherwise
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Duration

x = x1x2x3 . . ., tx = t1t2t3 . . .

time, pitch, voltage, speed
any quantifiable state-property

t(x) = t1 + t2 + t3 + . . .

xr(u) =











t(u)w(u)ℓ(u)p · |x|u if u ⊑ x

0 otherwise

duration is treated like any other weight
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Soft-Matching (“indel cost”)

“Hollister’s Problem”: some states are more different than others

(Single,Married) vs (Cohabitation,Married)

coordinates are “hard”: either 0 or >0

x′y =
∑

i xiyi, xi = 0 and/or yi = 0⇒ xiyi = 0

Inner product compares values of equally indexed coordinates

never “compares” subsequences containing “Married” with subsequences
containing “Single”

In OM: substitution cost - compare different states
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Soft-Matching (“indel cost”)

Define state-similarities M = (mij), 0 ≤ mij ≤ 1, mii = 1, mij = mji

calculate x′My instead of x′y

x′My =
∑

i

xiyi

︸ ︷︷ ︸

“hard′′

+2
∑

i 6=j

xi ·mij · yj

︸ ︷︷ ︸

“soft′′

d(x, y) = x′Mx+ y′My− 2x′My

Euclidean distance in “elliptical” space

implementation in Grid-algorithm: M1 ←M
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Unit-circles in Elliptical Space

M-Elliptical Circles: x′Mx = 1, M =




1 p

p 1




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Unit-Sphere in Elliptical Space

M-Elliptical 1-sphere
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An Application

Data described in

Müller, Gabadinho, Ritschard & Studer: Extracting knowledge from life courses:
clustering and visualization, Data Warehousing and Knowledge Discovery,
Lecture Notes in Computer Science, 2008, Volume 5182/2008, 176-185

4318 individuals, born 1909-1972, ≥30 years old, retrospective data

4 events: L(eft parental home), (1st) M(arriage), (1st) C(child), (1st) D(ivorce)

8 states: P(no event, still with Parents), L, M, LM, C, LC, LMC, D

data example:
birth L M C D

1974 1992 1994 1996 -

sequence example:

74 . . . 91 92 93 94 95 96 97 98 . . .

P . . . P L L LM LM LMC LMC LMC . . .
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An Application

OM-cost matrix C:

P L M LM C LC LMC D

P 0

L .25 0

M .38 .62 0

LM .50 .25 .38 0

C .25 .50 .38 .75 0

LC .50 .25 .62 .50 .25 0

LMC .75 .50 .38 .25 .50 .25 0

D .75 .74 .38 .50 .75 .75 .50 0

soft-matching matrix M = 1−C: mij = 1− cij
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Finding Clusters (PAM) with dOM

6 clusters seems optimal
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OM-cluster profiles: Chronogrammes
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OM-cluster profiles: order-plots
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An alternative clustering

Using subsequences, weighed for

duration

embedding frequency

and employing soft-matching

11 clusters seems optimal
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Cluster profiles: Chronogrammes
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Cluster profiles: order-plots
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Clustering Quality
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Choosing Distance is Not Trivial !

Cramer’s V: Soft-Matching & OM

emb emb/dur OM
emb 1.0

emb/dur .67 1.0
OM .84 .65 1.0

THANK YOU
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