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Mechanisms of the transition to adulthood: an
application of Hidden Markov Models
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Abstract An increasing number of studies focuses on understanding the processes
underlying the transition to adulthood. However, the transition to adulthood is
a complex process of a series of events that are often interlinked. Even though
life courses are greatly varying sequences of roughly the same life course events,
the complexity is caused by the fact that these sequences consist of correlated
events and spells and these correlations depend on gender, social class, cohort and
cohort-related macro events. Our previous work demonstrated that the application
of stochastic models like the Latent-Class model helps to describe the variation in
life courses and its correlation with gender and social class. But the Latent-Class
model cannot account for correlated events within life courses nor can it account
for switches between latent types during the life course. We argue that (Hidden)
Markov models, as a simple generalization of the Latent-Class model, has the abil-
ity to account for correlations between events and spells and also allows for switches
between latent types or model life courses. Therefore, this study will use (Hidden)
Markov models to produce a typology of trajectories of the transition to adulthood.
Furthermore, we will test hypotheses on social class- and gender differences in
observed life courses and latent types or model-life courses, using data from the
Gender and Generation Programme (GGP), which provides full monthly life course
sequence data between age 15 to 40.
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1 Introduction

The ultimate goal of life course research is to understand how life courses come
about and what variables affect their shape. Essentially, this is a holistic question: to
answer it requires the postulation of a mechanism of the generation of the complete
life course. Holistic life course models must satisfy a few simple properties. First,
these models must have a memory, a sense of the past, as it is generally assumed
that events in the early stages of the life course may affect stages or outcomes later
on [Mayer, 2009]. A second requirement is that the process that generates the life
course, is affected by variables that that are supposed to influence the life course:
gender, religion, parental education, etc. Finally, the model should be formulated
in terms of a process that is not directly observable: since the life course is gen-
erated through mental, not directly observable, processes that are conscious or un-
conscious, and decisions that are voluntary or involuntary. Of course, such models
should be testable and amenable to causal analysis.

Over the past decades, life course research has been dominated by two differ-
ent paradigms: Event History analysis (EH) [Blossfeld et al., 2007] and Sequence
Analysis (SA) [Cornwell, 2015]. EH-models are not holistic: they try to explain the
waiting times for certain life course events to occur and the SA-approach leads to
finding most frequent patterns in the wide variety of observed life courses, but it
does not account for this variety. Recently, we have seen other methods and models
being applied as well, for example Latent Class analysis [Barban and Billari, 2012]
and Structural Equation Models [Pakpahan et al., 2015] but neither of these meth-
ods satisfies all of the three requirements as formulated above.

However, there is a broad class of models that does satisfy the above require-
ments: the class of so called Hidden Markov Models. These models have a memory
in the sense as intended, they allow for time-constant and time-varying covariates
and are formulated on the basis of a latent, hidden, random process over a finite set
of states, a Markov chain. The models are testable in the sense that their parame-
ters can be estimated [Bartolucci et al., 2012, Rabiner, 1989] and easily allow for
causal analysis once formulated as a log-linear regression model [Paas et al., 2007].
Hidden Markov Models belong to a larger family of latent structure models that has
been amply described by [Langeheine and Van de Pol, 1990, Vermunt, 1997].

This paper aims to model the life course, confined to the relatively turbulent
transition to adulthood, through using Hidden Markov Models. The transition to
adulthood is usually described by a collection of events [Elder Jr, 1985] from which
two correlated processes can be distilled [Buchmann and Kriesi, 2011]: the school-
to-work transition and the process of family formation. Here, we provide an example
that solely focusses on the transition into adulthood in the family domain, as there is
a large body of literature on the processes involved. More specifically, we example
the family-life trajectories of French men and women born between 1956 and 1965,
using data from the French Generations and Gender Survey (GGS).

The paper is structured as follows: in this lengthy introduction we discuss the
main concepts of Hidden Markov Models and make some general remarks on their
application to life course research, Section 2 discusses our data and methods used,
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Section 3 discusses our results and Section 4 summarizes, concludes and suggests
further research.

1.1 Hidden Markov Models

Hidden Markov Models generalize the much simpler idea of a Markov chain. A
Markov-model or Markov-chain is a random process over a set of states such that the
probability of being in a particular state at the next observation only depends on the
state-history of the process. If the relevant state history just consists of the present
state, such a chain is called “first-order”. Figure 1 shows a graphical representation
of a first-order 2-state Markov-chain and its matrix of transition probabilities.

Fig. 1 A graph showing a first-order, 2-state Markov chain and its transition probability matrix A.
The states are labeled as “0” and “1” and the arrows represent the transition probabilities.
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Let us denote the k distinct states of a Markov chain as Q = {q1, . . . ,qk} and let St
denote the state that the system is in at time t, i.e. St could have any of the “values”
or labels from the set Q. Then we say that a random process over Q is a first-order
Markov-chain, precisely when

Prob(St = q j|S0 . . .St�1) = Prob(St = q j|St�1 = qi) = ai j, (1)

and we denote this probability by ai j. If we now define the initial state-probabilities
as Prob(S0 = qi) = pi, the Markov-chain l is fully defined by the k-vector p =
(p1, . . . ,pk) of initial state probabilities and the k⇥ k-matrix of transition probabili-
ties A = {ai j}: l = (p,A).

In an ordinary Markov chain, transition probabilities depend on the present state
only (see Equation (1)). However, it is easy to extend this model to account for the
effect of covariates. Let v and wt denote vectors of time-constant and time-varying
covariates. Then a direct extension of the Markov-chain model is formulated as

Prob(S0 = qi|v,wt) = pi(v,wt), (2)
Prob(St = q j|S0 . . .St�1,v,wt) = Prob(St = q j|St�1,v,wt) = qi) = ai j|v,wt . (3)

Clearly, this formulation implies a separate Markov-chain for each point in the
(v,wt)-space.

A Markov chain could be used to model a set of observed life course sequences
by simply identifying each of the observed states as a model state and estimating
the transition probabilities from the relative transition frequencies of the observed
sequences. The result of that would be a more or less accurate summary of the
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observed transition frequencies. However, it would not lead to a credible model for
the way these sequences were generated. Therefore we now turn our attention to an
extension of the Markov chain: the Hidden Markov Model.

In a Hidden Markov Model (HMM), the Markov chain is defined over a set of
latent, unobservable states. So, the stochastic process as such is not observable. Fur-
thermore, it is supposed that, at each state, the process ’emits’ an observable (an
observable can be univariate or multivariate) according to a state-specific proba-
bility distribution over the full set of observables, in the present context the ob-
servable states of a life course. Thus, in a k-state HMM with a set of observables
Y = {y1, . . . ,yn}, there must be a set B of k state-specific probability distributions
b j = (b j1, . . . ,b jn), each satisfying Âi b ji = 1:

b ji = Prob(ot = yi|st = q j). (4)

This allows us to represent the set B as a (k⇥n)-matrix

B =

0
B@

b11 . . . bn1
...

. . .
...

b1k . . . bnk

1
CA=

0
B@

b1
...

bk

1
CA (5)

whereof each row is a distinct probability distribution over the observables and the
complete HMM l = (p,A,B) is specified by the initial state distribution p , the
(k ⇥ k)-matrix A of transition probabilities and the (n⇥ k)-matrix B of emission
probabilities.

In Fig. 2, we show a graph of the HMM-generated events in a time-window
(t � 1, t + 1): at t � 1, the system arrives in state St�1 and emits observable ot�1
(governed by B) and then switches to state St (governed by A) and again emits an
observable, etc.. The reader should be aware that the system may, depending on the

Fig. 2 A graph showing the time-window (t �1, t +1) of a Hidden Markov process. At each time
t, the system is at some latent state St and emits an observable. Note that the hidden state St is not
necessarily different from St+1. The observable is a random sample from the set of observables,
according to a probability distribution that is specific for each state qi, i = 1, . . . ,k.
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probability a j j, actually stay in the same state j for quite a while and during that
time emit various different observables. Similarly, the observables may remain the
same for quite a while, at the same time but “below the surface”, the system actually
switches state several times. In practice, if we observe that people stay in the same
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observable state for many years, it is to be expected that the diagonal elements of A
are relatively big, i.e. close to 1.

1.2 Modelling with HMM’s: Some practical considerations

Let Oi = oi1 . . .oiT denote an observed sequence from a set O = {O1, . . . ,ON} of
such sequences and let Prob(Oi|l ) denote the likelihood of that sequence, given
the model. Furthermore, let Qi = qi1 . . .qiT denote the path along the latent states
that maximizes Prob(Qi|Oi,l ), i.e. the latent sequence that “best accounts” for the
observations, given the model.
Being able to calculate the likelihood of the observations given the model is a
precondition for EM-estimation of the parameters of the model and calculating
Qi, the most probable latent sequence, is a precondition for a substantive inter-
pretation of the model. Both problems, evaluating Prob(O|l ) [Baum et al., 1970],
and calculating Qi [Viterbi, 1967] were already solved in the sixties of the pre-
vious century and have been amply described in many sources [Rabiner, 1989,
Zucchini and MacDonald, 2009, Bartolucci et al., 2012]. Here, we will not deal
with the intricacies of these methods. Instead, we will discuss some practical issues
that are related to these methods and their output.

First, one should be aware that evaluating a HMM involves the estimation of
quite some parameters: with k postulated latent states, we have to estimate k � 1
parameters p̂i; k�1 since we must have that Âk

i p̂i = 1. Likewise, we have to estimate
k(k�1) parameters to obtain Â and k(n�1) parameters to get B̂. So, the surface of
the likelihood function Prob(O|l ) is quite irregular and therefore, attempts to find
its maximum, be it through EM [Dempster et al., 1977] or through any other method
like simulated annealing [Andrieu and Doucet, 2000], will most often converge to a
local instead of the global maximum. Extending the HMM to incorporate covariates
will only aggravate this problem. Therefore, the estimation of a HMM should be
repeated quite some times to find a configuration (p̂, Â, B̂) that (probably) comes
close to the maximum sought for. For example, peeking around the corner of our
modelling life courses with HMM’s, we display the density of the BIC-values as
obtained over 1000 repetitions of estimating a 4-state model. Clearly, these BIC-
values are quite different, as are the underlying configurations (p̂, Â, B̂). Obtaining
this curve took almost three hours of computation time and quite some memory.
Increasing the number of states and the number of trials soon requires unfeasible
computation times and memory for this exercise.

However, we do not consider this to be a serious problem for applying HMM’s
to model life courses. Normally, the size of the observation alphabet will be small
and the number of postulated states k will be rather small too. The latter number
should reflect the number of stages or states in which the subjects will take demo-
graphic decisions and these decisions are small in number; they pertain to leaving
the parental home, partnering, reproducing and, eventually, returning to the parental
home or breaking up a partnership. Therefore, in practice, k should be small. Con-
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Fig. 3 BIC-density plot as obtained from repeating the estimation of a 4-state HMM 1000 times
with random initial values.

sidering the big data sets that social demographers use today, it is to be expected
that the optimal value of the information criteria that we use to evaluate the fit of
a HMM - variants of minimum-c2, AIC or BIC - cannot be good indicators of the
optimal number of latent states as these indicators will drive us to accept large num-
bers of latent states while substantive interpretation is problematic. Rather, the size
of k is to be fixed on a theoretical basis: can we assign a credible interpretation to
these states in view of the latent trajectories and the way these trajectories and the
emission distributions, i.e. the probability of picking particular behavioral, demo-
graphic alternatives, change as a result of covariates that pertain to societal pressure
on rather than social capital of the subjects studied.

Then how do we start interpreting the latent states? A first clue to this interpre-
tation is provided by studying the latent state sequences over time and evaluating
the probabilities Prob(St = q j|t,l ), t = 1, . . . ,T, j = 1, . . . ,k, i.e. the relative fre-
quencies of state occupancy, aggregated over the sample studied. Again peeking
around the corner of our analysis yet to be presented, we show a plot of these rela-
tive frequencies for a 4-state HMM in Figure 4: This plot shows something that is
not evident from the estimated transition probabilities: most subjects start in the la-
tent state labeled as LS1 so it should be associated with a decision about leaving the
parental home and this should be reflected in the emission probability distribution
over the observables: it should be characterised by a relatively high probability of
emitting the event “leaving the parental home”. So, the marginal state occupancies
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Fig. 4 Plot of the marginal probabilities over time of latent state-occupancy in a 4-state HMM.

over time and the emission distributions will help us to interpret the latent states.
However, these considerations do not suffice for a credible interpretation.

A credible interpretation can only arise in the light of the way covariates affect
the parameters of the model: do the estimated effects of covariates corroborate, or at
least are not at variance with, the knowledge that we already have about the effects of
these covariates on the occurrence and timing of life course events. For example, we
may expect that low-educated will enter parenthood earlier than high-educated and
this should be reflected in the differences between transition probabilities and/or the
emission probabilities of lower- and higher-educated. Therefore, it is not enough to
only evaluate a HMM as such: we need to enrich the model with relevant covariates
in order to decide on the credibility of the interpreted model.

How to incorporate covariates into a HMM? Thereto, we consider the likelihood
Prob(Oi|l ,v) of a particular sequence Oi from a set O = {O1, . . . ,ON} of such
sequences, wherein v denotes a vector of covariates. Since, according to the model,
the observed sequences result from the latent sequences Qi, we can decompose this
likelihood as follows:

Prob(Oi|l ,v) = Prob(Oi,Qi|l ,v) (6)
= Prob(Oi|Qi,l ,v)Prob(Qi|l ,v), (7)

and thus, the likelihood of our data given the model can be decomposed as

Prob(O|l ,v) = ’
i

Prob(Oi|Qi,l ,v)

| {z }
“operational”

’
i

Prob(Qi|l ,v)

| {z }
“structural”

, (8)
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the multiplications arising from the assumption that the sequences have arisen in-
dependently from each other. From the latter Equation 8, we observe that the total
likelihood of our data given the model can be decomposed into two separate parts.
The second part is called the “structural” part of the model since it pertains to the un-
observable structure (the transition probability matrix) of the stochastic process over
the latent states, the components of the postulated model. The first part of the mul-
tiplicative structure (additive if we consider log-likelihood) we called “operational“
for two reasons. The first reason is that we may consider the emission probabilities
as choice-options given the latent state the person is in. For example, if the subject
is in a state where partnering is the key issue, it may chose between different op-
tions to operationalize the positive choice for partnering: marriage, cohabitation or
a relational agreement without living together. The second reason for calling this
part “operational” is the fact that, given our belief in the validity of the number and
structure of the latent states, this part of the model is affected by our way of op-
erationalizing the life course in observational labels: choosing a different alphabet
will affect the model fit without altering the structural validity1. Unfortunately, we
cannot separate these parts of the model when assessing the model’s fit as the ob-
servations are our only entry to the latent, structural part of the model. Therefore, it
is not wise to have the same covariates play a role both in the structural and in the
operational part of the model as it would severely hinder the substantive interpreta-
tion of the model. Here, we prefer to assume that covariates do not have a role in the
operational part of the model, i.e. we assume that

Prob(Oi|l ,v) = Prob(Oi|Qi,l )Prob(Qi|l ,v), (9)

or, equivalently, that only the initial and state transition probabilities are affected by
covariates. The reason for this preference is that we know that most life courses in
developed countries only differ in the timing and duration of the various stages on
the rout to adulthood. This implies that, in most countries, the behavioral alternatives
and the order in which they are expressed are roughly the same for most people.

1.3 Applications of HMM

HMM’s have been successfully applied in several fields [Bartolucci et al., 2012], in-
cluding but not limited to psychological and educational measurement [Vermunt et al., 1999],
medicine and health [Cook et al., 2000], criminology [Bijleveld and Mooijaart, 2003],
marketing and related fields [Paas et al., 2007], interactions during survey-interviews
[Elzinga et al., 2007] and labor market research [Richardson et al., 2011]. However,
we have not yet seen the application of HMM’s to life course research. One reason

1 [Bartolucci et al., 2012] call this second part of the model the ’measurement model’. This is
adequate when the observables contain a measurement error as is often the case in responses
to psychological test or survey items; in life course encoding such errors are rare (but see
[Manzoni et al., 2010]).
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for that could be that only recently, big demographical data sets, cheap software and
fast PC’s have become widely available.

2 Data and Method

2.1 Data

The Gender and Generation Programme (GGP) is a Longitudinal Survey of 18-79
year olds in 19 countries that that examines the relationships between generations
and genders, by collecting nationally representative data in all participating coun-
tries. [Fokkema et al., 2016] provide extensive information on design and represen-
tativeness of the GGS. In this study, we select respondents (males and females, in
total 1900) in the France GGP data of a cohort between birth year 1956 and 1965.
In the selected dataset, full annual fertility, partnership and leaving parental home
information between age 15 and 40 are available and background information such
as gender, education level, parental education, parental divorce.

To demonstrate the application of HMM, we construct a multi-channel sequence
dataset of respondents’ fertility history (4 categories: no child, 1 child, 2 children,
3 and more children), partnership history (3 categories: single, cohabitation, mar-
riage), and leaving parental home (2 categories: yes or no). To investigate the link
between background variables, we include gender (2 categories: female and male)
and education level (2 categories: high and low). To visualize the multi-channel se-
quence dataset, four sequence index plots separated by gender and education level
are shown in Figure 5 (a) and (b). Take Figure 5 (a) left panel for example, it contains
the fertility (4 categories), partnership (3 categories) and leaving home annual in-
formation throughout young adulthood (age 15 - 40) of high educated male respon-
dents. The complexity of the dataset is obvious: it contains 24 categories (4⇥3⇥2)
of 25 repeated annual measures.

Insert Figure 5

2.2 Method

During the analysis, the selected multi-channel sequence dataset was fitted to hidden
Markov model (HMM) with hidden states equals 3-6, each of a time-homogeneous
model with 1000 random starting values. This paper selectively shows the result of
HMM 4 state solution as proof of concept of the application of HMM in the tran-
sition to adulthood research. Two types of covariates, i.e., gender (female vs. male)
and education (low vs. high) were introduced in the latent model of HMM 4 state
solution (also a time-homogeneous model with 1000 random starting values). The
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reason of using 1000 random starting values for HMMs is to reduce the influence
of local maximum. The estimation procedure of HMM relies on Baum-Welch or
EM (Expectation-modification) algorithm [Rabiner, 1989]. With the increment of
hidden states, the number of parameters to be fitted also increase drastically. Dur-
ing the analysis, it is found out that for the given dataset, HMM 6 state solution
is unstable. It took more than 1 GB in the RAM, and 1000 random starting value
repentances were not enough to generate stable solution. It might be possible to
perform HMM with high number of hidden states on HPC (high performance com-
puting) environment. HMMs with hidden states from 3 to 5 generate stable solution.
Choosing the HMM with 4 hidden states is due to the fact that it largely reduce the
data complexity at the same time providing substantively interesting interpretation.

All analyses were performed in R environment for statistical computing and
graphics in a 64 bit PC with 32 GB RAM. R packages LMest [Bartolucci et al., 2015]
and markovchain [Spedicato et al., ] were utilized for Hidden Markov models. Se-
quence visualization and related techniques were performed by R package TraMineR
[Gabadinho et al., 2011].

3 Result

In this section, results of fitting HMM 4 state solution (without and with covariates
in the latent model) to the multi-channel France GGP sequence data are presented.
In each model, the time cost, the model fit parameter (BIC), the output parameters
(initial probability distribution p , transition probability distribution ai j and emis-
sion probability distribution b j), the visualization and interpretation of these output
parameters and the mechanisms revealed by HMM are presented.

3.1 Hidden Markov model 4 hidden state solution

The HMM with 4 hidden states were performed with 1000 random stating values to
reduce the influence of local maximum. It took 2.6 hours and achieved a minimum
BIC of 115961. The fitted HMM with the lowest BIC was chosen as the HMM 4 so-
lution. The interpretation of the HMM is based on its output parameters, i.e., initial
probability distribution, transition probability distribution and emission probability
distribution. As described in Introduction Section, initial probability distribution re-
veals the proportion of hidden states that respondents occupy in the beginning of
their life courses; transition probability distribution reveals the transition rate (per
year in this study) to other hidden states once respondents arrive at a certain hidden
state; emission probability distribution links the hidden states to the observed life
course.

The output parameters are shown in Table 1 (the hidden states are ordered as ’A’,
’B’, ’C’ and ’D’). It is difficult to interpret these number without graphic illustra-
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tion. Latent probability distribution graph (shown in Figure 6) is useful as a first step
to interpret Table 1. This graph is based on the initial probability distribution and
transition probability distribution shown in Table 1. There are four curves represent-
ing the dynamics of the four hidden states during respondents’ 25 year young adult
life course. Curve A is the state where almost every respondent begins with, and
the proportion of respondents in this state has been dropping ever since. Curve B
shows that, between age 20 and 30, overall majority of respondents take this hidden
state. Proportion of respondents in state B starts increasing since the age 15 until
the age 22. Curve C also shows a ’first increase then decrease’ pattern as state B,
however, proportion of respondents in this state is always lower than state B and the
timing of decreasing (age 30) is later than that of state B. Curve D indicates that the
proportion of respondents in state D keeps increasing throughout the whole young
adulthood and becomes the majority after age 30.

Insert Table 1
Insert Figure 6

To understand the mechanisms behind the dynamic transition between these la-
tent states, one can plot the state transition graph. As shown in Figure 6, from start-
ing state A, one is 14 times more probable to transit to state B than to state C,
given the transition probabilities of 0.14 (A to B) and 0.01 (A to C) in Table 1.
Combined with emission probability distribution, state A is featured as being single
(probability = 0.97), no child (probability = 0.99) and living with parents. State B
is featured as being single (probability = 0.53), cohabiting (probability = 0.27) or
married (probability = 0.20), no child and left parental home, whereas state C is fea-
tured as being single (probability = 0.17), cohabiting (probability = 0.25) or married
(probability = 0.59), 1 child and left parental home. State C can be reached also from
state B, which is 9 times more probable from State A. From state C, one can transit
to state D. State D is an absorbing state, which means once one arrives at this state,
transition to other states is not possible any more. State D is featured as low prob-
ability of being married (probability = 0.76), having 2 (probability = 0.68) or more
(probability = 0.33) children. Summarizing the information given by Table 1, Figure
6 and Figure 7, one can interpret these four hidden states as inclinations of transi-
tion, reflecting the respondents’ tendency to act during the stay of a certain state.
Respondents in state A as the beginning of young adulthood: they are single, living
with their parents, and having no child. They are also probably in school or training
for future employment, which are not observable in the current dataset. Their life
course activities are preparing them to leave parental home and start an independent
life. Therefore, state A can be interpreted as inclining ’Leaving home’. Respondents
are mainly in state B between age 20 and 30: they have different partnership status
(mainly being single probability = 0.53), left parental home, and having no child.
In this state, respondents’ behaviors in are preparing themselves in ’Family forma-
tion’. In state C, the probability of partnership status shows high proportion of being
married (0.59) and respondents already have one child. This state can be interpreted
as ’Family extension’. State D, the absorbing state, is the ’Family completion’ state.
The young adulthood life course end at age 40, where the observed life course stops
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in this study. Note that, the above-mentioned transition pattern applies to the whole
sample, but respondents from different background (gender or education) may have
different transition rate between states. The hidden Markov model with covariates
are useful in studying the differences between social classes.

Insert Figure 7
After interpreting the hidden states as inclinations leading to young adult demo-

graphic transitions, it is necessary to visualize the hidden states paths throughout the
whole young adulthood of respondents. The necessity comes on the one hand from
need to check whether the hidden states paths fit substantive expectation and on the
other hand from the three basic problems in any HMM application (describe in In-
troduction Section). The hidden states paths throughout the whole young adulthood
of respondents (sort from end) are shown as sequence index plot in Figure 8 (a).
Sequence index plots of longitudinal data use stacked bars or line segments to show
how individuals move between a set of conditions or states over time [?]. Compared
with the multi-channel sequence life course shown in Figure 5, the complicated
partnership, fertility and leaving home trajectories are reduced into four category
of inclinations. To better understand the heterogeneity in the transition into adult-
hood among these inclinations, sequence analysis with OM [?] was performed on
the hidden state paths. Four typologies of the hidden states (chosen by cluster qual-
ity statistics [?]) were presented in Figure 8 (b) and Figure 8 (c). Figure 8 (b) are
the sequence index plots of each typology and Figure 8 (c) is the sequence medoid
plot [?], which is the most representing existing sequence in each typology. With the
help of Figure 8 (b) and (c), four types of transition into adulthood have been iden-
tified, namely, 1: Late fertility or no fertility, 2: Traditional pathway (Leaving home
at age 21, Family formation at age 26, Family extension at age 29, and followed by
Family completion), 3: Small family (remaining in Family extension state until end
of observation age 40), 4: Early transition (Leaving home at age 18, Family forma-
tion at age 21, Family extension at age 24, and followed by Family completion).

Insert Figure 8

3.2 HMM 4 with covariates in its latent model

As discussed in Introduction Section, HMM can allow covariates in its latent model
to explain the heterogeneity in the population. One of the most intuitive way to in-
clude covariates in latent model is to allow for different transition probability distri-
bution for different groups of respondents. It take 7.2 hours to perform HMM with
4 hidden states, 1000 random starting values, and including 2 variables, namely,
education (high vs. low) and gender (female vs. males). The lowest BIC among
these 1000 repentances is 113005, which is lower than the BIC of HMM 4 without
covariates. The output model parameters are initial probability distribution, emis-
sion probability distribution (shown in Table 2) and 4 different transition probability
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(shown in Table 3) distributions. Compared with the initial probability distribution,
transition probability distribution and emission probability distribution of HMM 4
without covariate (shown in Table 1), there are some unnoticeable change in some
probabilities, and the interpretation of these 4 hidden states remains the same.

Insert Table 2
Insert Table 3

The information of Table 3 reveals the difference in the transition to adulthood in
gender and education level. From state A: ’Leaving home’, high educated females
are 0.01 faster (transition probability 0.16 vs. 0.15) to state B: ’Family formation’
than the low educated males and similar pattern can be found in high educated males
against low educated males. Compared with males, females are faster in transition
from ’Leaving home’ to ’Family formation’. From state B: ’Family formation’, high
educated females are 0.05 slower (transition probability 0.08 vs. 0.13) to state C:
’Family extension’ than low educated females, and similar pattern can be found in
high educated males against low educated males. Besides, males moves slower from
’Family formation’ to ’Family extension’ than females. Transition from state ’Fam-
ily extension’ to state D: ’Family completion’ shows different pattern than from
state ’Family formation’ to state ’Family extension’. From State ’Family extension’
to state ’Family extension’, high educated females are 0.05 (0.19 vs. 0.14)than low
educated females, and similar pattern can be found in high educated males against
low educated males. For this transition, males are faster than females. To summa-
rize, (1) high educated move out of parental home faster than low educated, females
faster than males; (2) high educated start having child and change their partnership
status slower than low educated, females faster than males; (3) high educated are
faster having more child once they have one child, males faster than females.

4 Conclusion and Discussion

Most peoples life courses are made up of a multitude of changes in multiple life
domains. A key challenge of life course research is to make sense of this complexity
by searching for fundamental processes that drive these observable transitions and
by examining which factors influence them. In this paper, we claim that Hidden
Markov modeling (HMM) holds great promise in unraveling these processes, and
we provide a relatively simple example of its potential by applying it to the family
transition into adulthood among French men and women born between 1956 and
1965.

From a substantive point of view, what the HMM results reveal is that two fun-
damental viewpoints on the transition to adulthood can be distinguished. The HMM
solution with four hidden states views the family transition to adulthood as a process
that leads to the intergenerational reproduction of family life. The first challenge that
young adults face is about leaving the parental home and finding a suitable partner
relationship. The next steps in this intergenerational reproductive process are about
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the initiation of a family (entry into parenthood), followed by successive phases
of family expansion and family completion. Thus, the 4-HMM solution suggests a
model of the full family cycle starting as a child in a family of origin and ending up
as an adult in a next generation family. Our analysis also reveals clear differences
in the speed and likelihood of making this transition between men and women and
between the higher and lower educated. For instance, higher educated women make
the first fundamental transition (out of the parental home) at earlier ages than lower
educated women, but postpone the establishment of a family of their own. However,
once they decide to establish a family, higher educated women are faster in mak-
ing the family expansion step. Thus, our analysis shows that the pace and rhythm
of this fundamental family succession model differs strongly between low and high
educated women.

The 5-HMM solution (not presented) provides another interesting view on the
family transition into adulthood. Rather than viewing this transition as a unilinear
trajectory where young adults only differ in the likelihood and speed of moving to
successive stages as is central to the 4-HMM solution, the 5-HMM solution distin-
guishes between two alternative family pathways into adulthood. As in the 4-HMM
solution, the first challenge every young adult faces is when to leave the parental
home. One pathway strongly resembles the traditional pathway where young adults
first establish a traditional family, characterized by marriage and possibly a child,
followed by a subsequent stage of family expansion. However, a second pathway
is distinguished as well, where young adults opt for a more autonomous lifestyle,
characterized by single living and/or unmarried cohabitation. After this stage, these
young adults are confronted by another fundamental choice, either to continue this
alternative lifestyle track and opt for children outside marriage, or to align them-
selves into the traditional pattern by moving back into the traditional family path-
way. As with the 4-HMM solution, linking covariates to the 5-HMM structural
model offers interesting insights. For instance, highly educated women are more
likely to start off on the alternative track than low educated women, but once they
enter this track, they are also more likely to revert to the traditional pattern than low
educated women who start off on the alternative track.

Whether one interprets the data on the basis of the 4-HMM or 5-HMM solu-
tion at least partly depends on ones theoretical interests. The 4-HMM solution of-
fers a succinct interpretation of the traditional family life pattern, pointing at three
major decisions to be taken in the course of the family-life cycle [Glick, 1955].
The 5-HMM solution incorporates more heterogeneity into this family life cycle
[Glick, 1989], and offers interesting opportunities to study the process of family
change that is often captured under the heading of the Second Demographic Transi-
tion [Lesthaeghe, 1995].

A major advantage of both of these models is that they greatly limit the com-
plexity of the process of transition into adulthood, by reducing the large number
of transitions between observable states to a small number of transitions between
unobservable, latent states. This property could be even more useful if the number
of potential states and transitions becomes even larger, for instance if one wants to
study both family transitions and career-related transitions in one model.
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The models introduced in this paper have clear merit for life course research.
Several extensions of the Hidden Markov model could be envisaged, for example,
constrained HMM. Constrained HMM is useful when one has a clear idea about
the structure of the transition pattern, and want to test the hypothesized transition
probability distribution. This paper did not elaborate on this type of topic yet, but
it can be of great interest for future research. Generally, in applying these models
to life course data, researchers have to be aware of both theoretical and practical
restrictions on the analyses. Models should not become too complex in order for
them to be mathematically feasible to estimate and to be theoretically interpretable.
Our paper suggests a number of guidelines in this respect that may prove useful to
future users.
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Table 1: HMM model with 4 hidden states output parameter: Transition prob-
ability distribution, initial probability distribution and emission probability dis-
tribuion (ordered).

Transition probability distribution
State State

A B C D
A .85 .14 .01 0
B 0 .91 .09 0
C 0 0 .85 .15
D 0 0 0 1

Initial probability distribution
State A B C D

.94 .06 0 0

Emission probability distribution
Fertility State
category A B C D
0 .99 1 0 0
1 .01 0 1 0
2 0 0 0 .68
3+ 0 0 0 .33
Partnership State
category A B C D
S .97 .53 .17 .11
U .02 .27 .25 .14
M .01 .20 .59 .76
Leaving home State
category A B C D
No 1 0 .02 .01
Yes 0 1 .98 .99

1
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Table 2: HMM model 4 with covariates output parameter: initial probability
distribution and emission probability distribuion (ordered).

Initial probability distribution
State A B C D

.94 .06 0 0

Emission probability distribution
Fertility State
category A B C D
0 .99 1 0 0
1 .01 0 1 0
2 0 0 0 .67
3+ 0 0 0 .33
Partnership State
category A B C D
S .97 .50 .17 .11
U .02 .29 .25 .14
M .01 .21 .58 .75
Leaving home State
category A B C D
No 1 0 .02 .01
Yes 0 1 .98 .99

2
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Table 3: HMM model 4 with covariates output parameter: Transition proba-
bility distributions of low educated males, high educated males, low educated
females and high educated females (ordered).
Transition probability distribution of low educated males
State State

A B C D
A .86 .13 .01 0
B 0 .91 .09 0
C 0 0 .86 .14
D 0 0 0 1

Transition probability distribution of high educated males
State State

A B C D
A .85 .14 0 0
B 0 .94 .06 0
C 0 0 .81 .19
D 0 0 0 1

Transition probability distribution of low educated females
State State

A B C D
A .84 .15 .01 0
B 0 .87 .13 0
C 0 0 .86 .14
D 0 0 0 1

Transition probability distribution of high educated females
State State

A B C D
A .83 .16 .01 0
B 0 .91 .08 0
C 0 0 .82 .19
D 0 0 0 1

3
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(a)

(b)

Figure 5: Multi-channel sequence presentation of the fertility, partnership and
leaving home annual data of respondents between age 15 and 40 in France GGP
birth cohort 1956-1965 (a) are sequences for high educated and low educated
males. (b) are sequences for high educated and low educated females.
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Figure 6: Latent probability distribution of change in the 25 years of HMM 4
based on the initial probability and transition proability distribution of HMM
4. State ordering corresponding to Table 1.
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Figure 7: State transition graph based on the transition probability distribution
of HMM 4. Thickness of the arrows reflects the transition probabilities (the
transition probability not to itself are shown next to the arrow). State ordering
corresponding to Table 1.
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(a)

(b)

(c)

Figure 8: a: Sequence index plot of Viterbi path of all unique multi-channel
sequence in the selected French GGP dataset. b: Sequence index plot of clas-
sified (Sequence Analysis) viterbi path. c: Sequence medoid plot of classified
(Sequence analysis) viterbi path.
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