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Analysing Complex Life Sequence Data with
Hidden Markov Modelling

Satu Helske, Jouni Helske, and Mervi Eerola

Abstract When analysing complex sequence data with multiple channels (dimen-
sions) and long observation sequences, describing and visualizing the data can be
a challenge. Hidden Markov models (HMMs) and their mixtures (MHMMs) offer
a probabilistic model-based framework where the information in such data can be
compressed into hidden states (general life stages) and clusters (general patterns in
life courses).

We studied two different approaches to analysing clustered life sequence data
with sequence analysis (SA) and hidden Markov modelling. In the first approach
we used SA clusters as fixed and estimated HMMs separately for each group. In the
second approach we treated SA clusters as suggestive and used them as a starting
point for the estimation of MHMMs.

Even though the MHMM approach has advantages, we found it to be unfeasible
in this type of complex setting. Instead, using separate HMMs for SA clusters was
useful for finding and describing patterns in life courses.

1 Introduction

In social science applications, sequence analysis (SA) has gained more and more
interest since its introduction in the mid-80s. It is now central to the life course
perspective where it has been used to understand various trajectories and crucial
transitions (Gauthier et al., 2014).
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Often the goal in SA is to find a typology of life sequences described as categor-
ical time series data. Dissimilarities between each pair of sequences is determined
using some criterion. Common choices have been optimal matching (McVicar and
Anyadike-Danes, 2002) and Hamming distances (Hamming, 1950; Lesnard, 2010),
but many modifications to these and also more fundamentally different methods
have been developed (see, e.g., Aisenbrey and Fasang, 2010; Elzinga and Studer,
2014). Usually these dissimilarities are then grouped using cluster analysis such as
Ward’s agglomerative algorithm.

Life course data often consists of not only one sequence per subject, but mul-
tiple parallel sequences, one for each life domain of interest. We refer to complex
sequence data for data which consist of multiple subjects and long multichannel
(multidimensional) sequences.

One option for studying such data is to combine the sequences of each subject
time point by time point by extending the state space of observations. This approach
is simple if the number of possible combinations is moderate, but the combined
state space grows rapidly as the number of domains and/or states grows. Multichan-
nel sequence analysis (Gauthier et al., 2010) has been used for computing pairwise
dissimilarities and finding clusters in complex sequence data (see, e.g., Eerola and
Helske, 2016; Müller et al., 2012; Spallek et al., 2014). However, the dissimilarities
are largely affected by the chosen dissimilarity metric and the cluster allocation may
not be well suited to borderline cases. Also, describing, visualizing, and comparing
such data is difficult. We use hidden Markov modelling for gaining a probabilistic
descriptions of complex sequence data.

Hidden Markov models (HMMs) have been widely used in biological sequence
analysis (Durbin et al., 1998) and speech recognition (Rabiner, 1989). Typically, the
interest is in one long time series or another type of sequence. In social sciences this
approach has been called latent Markov modelling. Typically, the data consists of a
few measurements for multiple subjects.

Mixture hidden Markov model (MHMM) is a generalization of the HMM. There
we assume that the data consists of latent subpopulations with different model struc-
tures. In the context of social sciences, the mixture hidden Markov model approach
was formulated by van de Pol and Langeheine (1990) as the mixed Markov latent
class model and later generalized to include time-constant and time-varying covari-
ates by Vermunt et al. (2008) (who named the resulting model as the mixture latent
Markov model, MLMM).

Multidimensional responses are included in the formulation of the MLMM but,
to our knowledge, there are no empirical studies with complex life sequence data.
Few studies use (M)HMMs for multichannel social science data. Helske and Hel-
ske (2016) have illustrated HMMs and MHMMs for multichannel data but do not
conduct actual analyses with real data. Bartolucci et al. (2007) have studied crim-
inal trajectories using HMMs with multiple binary sequences per subject. The data
were large in the number of subjects (684 000 individuals), but sequences were
short (6 age categories) and they had fixed groups (men and women) instead of lat-
ent clusters. Crayen et al. (2012) have used a hierarchical MLMM for two-channel
categorical sequences to model dynamics of mood regulation of university students
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during one week. The sequences were longer (56 time points) but the number of
subjects is moderate (164) and they used only three states in both channels. In their
hierarchical model there were two parallel latent structures; one between the days
and the other within the days.

We study two approaches to analysing complex sequence data. The first is to
use sequence analysis and cluster analysis for finding a few sets of clusters and
then, separately for each cluster, to estimate an HMM. In this approach, hidden
Markov modelling is used to compress and describe life course information within
the clusters and to help choosing the number of clusters.

The second approach is to estimate a mixture model. Now the clustering is not
fixed but we get a probability of each individual belonging to each cluster. For large
data, estimating the MHMM with the maximum likelihood can be a complex and
time-consuming task unless the set of candidate models is restricted. We study the
option of using SA clusters and simple HMMs as a starting point for mixture mod-
elling.

2 Interpretation of hidden Markov models for life sequences

One rationale behind using the HMM approach for life sequence analysis was the
attempt to identify similar life course patterns based on similar hidden state traject-
ories. The similarity of hidden state sequences can be attributed to both external
factors, which are common to groups of populations, or to internal behavioural sim-
ilarities between individuals with similar features. Finding hidden dynamics is thus
important for analysing and grouping life courses and also for understanding rela-
tionships between factors that are measured. The significance of hidden states in life
sequence data is dependent on the chosen structure of the model. The goals of our
analysis were two-folded:

1. to group individuals with similar life course patterns (clusters) and
2. to compress information in observed states across life domains to capture patterns

and dynamics within a group (hidden states)

The aim was to find hidden states that compress the information across several
life domains into more general life stages. These life stages could be either stable
episodes between two transitions (e.g., employed and married without children) or
characterized by transitions in some of the life domains (e.g., moving between un-
employment and short-term jobs). We restricted to left-to-right models where trans-
itions back to previous hidden states are not possible. Such representation makes it
easier to comprehend the overall dynamics within a group and is also natural from
the life course perspective: even though individuals may be in similar states at dif-
ferent times, the second time has a different history compared to the first time. E.g.,
there could be a group where, at some points of their lives, individuals are married
with children, then divorced for a while, and later again married with children (but
with the history of having experienced a divorce).
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3 Data

We illustrate the analysis of complex life sequence data using a subsample of the
German National Educational Panel Survey (NEPS) (Blossfeld et al., 2011).

We restricted to life courses of an age cohort born in 1955–1959. Only individu-
als who were born in Germany or moved there before age 14 were included.

The data consisted of monthly life statuses of 1731 individuals in three life do-
mains (career, partnerships, and parenthood) from age 15 to age 50. For each in-
dividual, there were three parallel sequences of length 434, which made altogether
2,253,762 data points. Using the monthly time scale allowed for detecting also smal-
ler fluctuations in life courses, e.g. recurrent transitions between unemployment and
employment.

3.1 Sequences

The sequences in three life domains were constructed as follows:

Career with 4 states:

• Studying (in school, vocational training, or vocational preparation)
• Employed (full-time or part-time)
• Unemployed
• Else (parental leave, military or non-military service, voluntary work, or other

gap in employment history)

Partnerships with 4 states:

• Single (never lived with a partner)
• Cohabiting
• Married/in a registered partnership
• Divorced/separated/widowed

Parenthood with 2 states:

• No children
• Has (had) children (biological, adopted, or foster children)

The coding for parenthood was very simple. A practical reason was that this
record was available for most individuals, whereas more detailed information was
often missing. On the other hand, we can argue that specifically the experience of
becoming a parent is relevant as one step in the developmental process into adult-
hood.

For the latter two life domains, the status of each month was usually determined
from the latest event. An exception was made for the rare partnerships that lasted
for less than a month; there separation was coded from the following month onward.
In a case of multiple records per month in the career domain, the final status was
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given according to assumed importance: school and vocational training came before
employment, which in turn dominated over vocational preparation, unemployment,
and other non-employment statuses.

Altogether 306 individuals (17.7%) had some missing information in one or two
life domains. Thus, at each time point we have at least some information from each
individual.

4 Hidden Markov models

In the context of hidden Markov models, observed states are determined via a
Markov process of hidden states. These hidden states cannot be observed dir-
ectly, but only through the sequence(s) of observations, since hidden states generate
(“emit”) observations on varying probabilities.

Assume we have multichannel sequence data for N individuals with C paral-
lel sequences of length T . Naturally, the following applies for single-channel data
(subjects with one sequence only) by setting C = 1. Let us denote the observation
in channel c, c = 1, . . . ,C, of individual i, i = 1, . . . ,N, at time t, t = 1, . . . ,T, with
yitc and the corresponding hidden state with zit . A discrete first order hidden Markov
model M is characterized by the following parameters:

• Initial probability of hidden state s:

πs = P(zi1 = s); s ∈ {1, . . . ,S}, for all i = 1, . . . ,N.

• Transition probability from hidden state s to hidden state r:

asr = P(zit = r|zi(t−1) = s); s,r ∈ {1, . . . ,S}, for all i = 1, . . . ,N.

• Emission probability of observed state mc in channel c given the hidden state s:

bs(mc) = P(yitc = mc|zit = s); s ∈ {1, . . . ,S}, mc ∈ {1, . . . ,Mc},
for all i = 1, . . . ,N. (1)

The (first order) Markov assumption states that the hidden state transition prob-
ability at time t only depends on the hidden state at the previous time point t−1:

P(zit |zi(t−1), . . . ,zi1) = P(zit |zi(t−1)). (2)

Also, the observed states at time t are independent of all other observations and
hidden states given the hidden state at t. For multichannel sequence data, we as-
sume the same latent structure applies for all channels, i.e., the hidden state at time
t for individual i generates the observed state yitc in all channels c. Observations
yit1, . . . ,yitC are assumed independent of each other given the hidden state zit , i.e.,
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P(yit |zit) = P(yit1|zit) · · ·P(yitC|zit). Fig. 1 illustrates an HMM with a hidden state
sequence and two channels.

zi1 zi2 zi3 ... ziT

yi11 yi21 yi31 ... yiT 1

yi12 yi22 yi32 ... yiT 2

Fig. 1 Illustration of the hidden Markov model structure for two-channel sequence data for indi-
vidual i with hidden states zi1 . . . ,ziT and observed states yi1c . . . ,yiT c,c = 1,2.

The log-likelihood for the HMM is written as

logL =
N

∑
i=1

logP(Yi|M ) , (3)

where Yi are the observed sequences in channels 1, . . . ,C for subject i and M de-
scribes the model and its parameters {π,A,B1, . . . ,BC}, where A = {asr} is a matrix
of transition probabilities and Bc = {bs(mc)} is a matrix of emission probabilities
for channel c. The probability of observation sequences for subject i given the model
is

P(Yi|M ) = ∑
all z

P(Yi|z,M )P(z|M )

= ∑
all z

P(z1|M )P(yi1|z1,M )
T

∏
t=2

P(zt |zt−1,M )P(yit |zt ,M )

= ∑
all z

πz1bz1(yi11) · · ·bz1(yi1C)
T

∏
t=2

[
azt−1zt bzt (yit1) · · ·bzt (yitC)

]
,

(4)

where the hidden state sequences z = (z1, . . . ,zT ) take all possible combinations of
values in the hidden state space {1, . . . ,S} and where yit are the observations of
subject i at t in channels 1, . . . ,C; πz1 is the initial probability of the hidden state at
time t = 1 in sequence z; azt−1zt is the transition probability from the hidden state at
time t−1 to the hidden state at t; and bzt (yitc) is the probability that the hidden state
of subject i at time t emits the observed state at t in channel c.
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4.1 Mixture hidden Markov model

The mixture hidden Markov model is, by definition, a mixture of simple hidden
Markov models. We assume that the population consists of subpopulations of in-
dividuals (latent classes or clusters) with different life patterns. Respectively, the
mixture model consists of varying submodels that characterize the clusters. Trans-
itions from one cluster to another are not allowed.

Assume that we have a set of HMMs M = {M 1, . . . ,M K}, where M k =
{πk,Ak,Bk

1, . . . ,B
k
C} for clusters k = 1, . . . ,K. We denote P(M k) = wk as the prior

probability that an arbitrary observation sequence is generated by the submodel M k

such that ∑K
k=1 wk = 1.

The log-likelihood of the MHMM is of the form

logL =
N

∑
i=1

logP(Yi|M )

=
N

∑
i=1

log

[
K

∑
k=1

P(M k)∑
all z

P
(

Yi|z,M k
)

P
(

z|M k
)]

=
N

∑
i=1

log

[
K

∑
k=1

wk ∑
all z

πk
z1

bk
z1
(yi11) · · ·bk

z1
(yi1C)

T

∏
t=2

[
ak

zt−1zt b
k
zt (yit1) · · ·bk

zt (yitC)
]]

.

(5)
For more detailed description of MHMMs, see Helske and Helske (2016) or Ver-

munt et al. (2008).

4.2 Model estimation

The log-likelihoods of (4) and (5) are efficiently calculated with the forward–back-
ward algorithm (Baum and Petrie, 1966; Rabiner, 1989). A common maximum
likelihood estimation method is the Baum–Welch algorithm, i.e., the expectation–
maximization (EM) algorithm in the HMM context.

The Baum–Welch algorithm requires starting values for model parameters. In
order to reduce the risk of being trapped in a poor local optimum, a large number
of initial values should be tested. Simpler models with few parameters are fast to
estimate; therefore, it is possible to fit the model numerous times with varying ran-
dom starting values for finding the model with the best likelihood. When the model
is large, estimation is more time-consuming and good starting values for model
parameters are useful or even essential.

The most probable path of hidden states for each subject given their observa-
tions and the model can be computed using the Viterbi algorithm (see, e.g., Rabiner,
1989). This path maximizes the probability of P(z|Yi,M ).
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The forward–backward algorithm can also be used for computing posterior
cluster probabilities (the probability that subject i belongs to a certain cluster) for
MHMMs. These can be used for classifying subjects into different groups.

4.3 Model comparison

Models with the same number of parameters can be compared with the value of the
log-likelihood function. For choosing between models with a different number of
hidden states, we need to take account of the number of parameters.

Bayesian information criterion (BIC) is the usual criterion for comparing (M)HMMs.
We define it as

BIC =−2log(L)+ p log

(
N

∑
i=1

T

∑
t=1

1
C

C

∑
c=1

I(yitc observed)

)
, (6)

where L is given in equation 3, p is the number of estimated parameters, I is the
indicator function, and the summation in the logarithm is the size of the data. If
data are completely observed, the summation is simplified to N× T . The smaller
the BIC, the better the model.

When computing the log-likelihood for the combined model with fixed SA
clusters we simply sum the log-likelihoods of the cluster-wise HMMs. BIC of the
combined model is determined as

BIC =−2×
K

∑
k=1

log(Lk)+
K

∑
k=1

pk log

(
N

∑
i=1

T

∑
t=1

1
C

C

∑
c=1

I(yitc observed)

)
, (7)

where Lk is the likelihood of the HMM of cluster k, pk is the number of estimated
parameters in the HMM for cluster k, and the summation in the logarithm is the size
of the full data set.

5 Visualizing sequence data and models

Visualization is an important tool throughout the analysis process from the first
glimpses into the data to presenting the results. As an example, we consider the
data and the HMM for one of the preliminary clusters described “Long education
and later family” (from the ten-cluster solution).

Fig. 2 illustrates a five-state HMM with the following life stages:

1. Single and (mostly) studying
2. Cohabiting, separated, or divorced; studying or employed
3. Married, studying or employed
4. Married with children, non-employed
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0.0067

0.0023

0.00017

0.016

0.002

0.00022

0.015

0.014

0.0084

1 0 0 0 0

EL/S/NC
EM/S/NC
ST/S/NC

EM/C/NC
EM/D/NC
ST/C/NC

ST/D/NC
EL/M/NC
EM/M/NC

ST/M/NC
EL/M/CH
EM/M/CH

ST/M/CH
UN/M/CH
others

Fig. 2 Illustrating the hidden Markov model for the cluster of individuals with long education
and later family. Pies present five hidden states, with slices showing the emission probabilities
of combinations of observed states. States with emission probability less than 0.05 are combined
into one slice for easier interpretation. The edges show the transtion probabilities – the thicker
the edge, the higher the probability. Initial probabilities of the hidden states are given below
the pies. The descriptions of the combined states show career/partnership/parenthood statuses:
ST=studying, EM=employed, UN=unemployed, EL=else; S=single, C=cohabiting, M=married,
D=divorced/separated; NC=no children, CH=has child(ren).

5. Married with children, employed

The hidden states are described by the most probable emitted observations, but there
are also less probable states that are omitted from the plot for readability. E.g., the
second state also emits marriages with a small probability—from the most probable
hidden state paths in Fig. 3 we can see that these are marriages which end in divorce
relatively fast. We could interpret that the second hidden state describes a life stage
of searching for a partner before forming a long-lasting marriage.

All subjects start from the first state at age 15. At the start of the follow-up they
are all single and mostly studying. The most common transition is to the second
state, but the third state is quite probable also. Due to the monthly data, the transition
probabilities are small—individuals usually spend years in each state.

Most individuals move to the third hidden state which describes childless mar-
riage. It is the hidden state where individuals spend the least time on average. Trans-
itions to the fourth and the fifth hidden state are almost as common. These both de-
scribe parenthood; some move out of workforce for a while or until the end of the
follow-up, while some continue working.

6 Analysis

Estimating a large MHMM for complex sequence data can be difficult and time-
consuming unless the structure of the model is fixed or known, even approxim-
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Fig. 3 State distributions of combined observations (top) and sequences of observations in each
channel as well as the most probable paths of hidden states (bottom). Sequences are ordered by
multidimensional scaling scores. States 1–5 correspond to the hidden states presented in Fig. 1.
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ately. In other cases, the set of candidate models must be somehow restricted. In this
case we had little prior knowledge on the structure of the model; hence, how many
clusters to choose and how many hidden states to include in each cluster? As trans-
itions were frequent in some of the trajectories and infrequent in others, it was clear
that some of the clusters should contain more hidden states than others, leading to
an unfeasible large number of possible model structures.

We compared two different approaches for the analysis of complex sequence
data, of which both were conducted in a stepwise manner. The first two steps applied
for both approaches, whereas step 3 was different (denoted as 3a and 3b). More
detailed descriptions of the analysis process are given in the following sections.

1. Sequence analysis. Computing the dissimilarities between the subjects with the
Hamming distance. Using Ward’s hierarchical method for clustering individuals
with similar life courses. Choosing a set of reasonable clustering solutions for
preliminary analysis.

2. Hidden Markov models. Separately for each SA cluster, fitting simple HMMs
with a different number of hidden states. Choosing the best model for each pre-
liminary cluster.

3a. Combined HMMs. Constructing a combined model from separate HMMs (from
step 2), keeping parameters fixed. Computing the likelihood and BIC for com-
bined models with 7–12 clusters for determining the number of clusters. Com-
puting the most probable path of hidden states for each individual.

3b. Mixture hidden Markov models. For each clustering solution (7–12 clusters),
estimating an MHMM by using parameters of the corresponding HMMs (from
step 2) as starting values. Computing the likelihood and BIC of the MHMMs for
determining the number of clusters. Computing the most probable path of hidden
states for each individual.

6.1 Step 1: Sequence analysis and preliminary clustering

We started by applying multichannel sequence analysis and computed the dissimil-
arities between the sequences. These were then used in cluster analysis.

6.1.1 Sequence dissimilarities

We compared a few dissimilarity metrics that are suitable for multichannel data: op-
timal matching (OM), generalized Hamming distance (HAM), and dynamic Ham-
ming distance (DHD) (Lesnard, 2010). We chose the generalized Hamming distance
with theory-driven substitution costs (see Table 1). The metric compares observed
states time point by time point and gives a cost for mismatches. It generally works
relatively well in a problem where timing is important and also here resulted in
meaningful clusters with high goodness-of-fit (see Sect. 6.1.2).
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Table 1 Substitution costs for Hamming distances.

Career status → ST → EM → UN → EL → *

Studying (S)→ 0 3 2 1 0
Employed (EM)→ 3 0 2 2 0

Unemployed (UN)→ 2 2 0 1 0
Else (EL)→ 1 2 1 0 0

Missing (*)→ 0 0 0 0 0

Partnership status → S → C →M → D → *

Single (S)→ 0 2 2 3 0
Cohabiting (C)→ 2 0 1 2 0

Married (M)→ 2 1 0 2 0
Divorced/sep. (D)→ 3 2 2 0 0

Missing (*)→ 0 0 0 0 0

Parenthood status → NC → CH → *

No children (NC)→ 0 3 0
Has children (CH)→ 3 0 0

Missing (*)→ 0 0 0

6.1.2 Cluster analysis

Ward’s method was chosen for clustering since it typically produces usable and
relatively even-sized clusters compared to most of the other clustering methods
(Aassve et al., 2007; Helske et al., 2015). We chose six clustering solutions with
7–12 clusters for further examination. The choice was based on the dendrogram and
interpretability of the clusters. Ward’s method is agglomerative, so when two smal-
ler clusters are merged, all other clusters remain the same. This means that within
the six sets of clustering results there were only 7+2+2+2+2+2 = 17 distinct
clusters (see Fig. 4 for an illustration).

Table 2 shows the goodness-of-fit statistics for different clustering results and
dissimilarity metrics, as measured by the proportion of the variation explained by
the clusters (pseudo coefficient of determination (R2); see Studer et al., 2011). Here,
generalized Hamming distances resulted in meaningful clusters with a relatively
high goodness-of-fit. OM resulted in clusters with as high goodness-of-fit while
DHD resulted in somewhat lower values of R2 (though not by much). OM clusters
were similar to HAM clusters in many ways but had more variation in the timings
of first transitions into employment, partnerships, and parenthood.

220 Helske, S., J. Helske, & M. Eerola



Analysing Complex Life Sequence Data with Hidden Markov Modelling 13

Clusters

7

8

9

10

11

12

1 2 3 4 5 6 7

1 8 9 3 4 5 6 7

1 8 9 3 10 11 5 6 7

1 8 9 12 13 10 11 5 6 7

1 8 9 12 13 10 11 5 14 15 7

1 8 9 12 13 10 11 16 17 14 15 7

Fig. 4 Clustering structure for Ward’s agglomerative method shown for six sets of clustering res-
ults with 7–12 clusters.

Table 2 Proportion of variation covered by 7–12 clusters. Clustering was based on different dis-
similarity metrics; generalized Hamming distance (HAM), optimal matching (OM), and dynamic
Hamming distance (DHD)).

Clusters HAM OM DHD

7 0.38 0.38 0.35
8 0.40 0.40 0.37
9 0.42 0.42 0.38
10 0.43 0.43 0.40
11 0.44 0.44 0.41
12 0.44 0.45 0.42

6.2 Step 2: Simple hidden Markov models for clusters

At the next step, we estimated five HMMs with 4–9 hidden states separately for each
of the 16 clusters—fewer hidden states for simpler clusters, more for more complex
ones. Since the goal was to find life stages between adolescence and middle age,
having too few or too many hidden states was not plausible nor interpretational.

6.2.1 Model estimation

We set starting values for parameters by determining candidate hidden states from
observed data and re-estimated the model numerous times by altering these values
as follows. At first, we estimated the model 10,000 times with a large variation
in starting values. For each re-estimation step we added noise from the N(0,0.32)
distribution to the the original starting values (with proper scaling and correction of
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signs). The aim of this estimation was to broadly explore the parameter space and
to get closer to the global maximum.

To make sure that we were at or near the global optimum, we re-estimated the
model by using the model with the highest likelihood as a stating point, now adding
noise from the N(0,0.152) distribution. If the model with the highest likelihood
was found only a few times, similar estimation was repeated (again using the best
model as the new starting point) in order to be fairly certain to have found the global
optimum. For clusters with fewer members and models with fewer hidden states, the
first estimation step was often enough for finding the (assumed) global maximum.

6.2.2 Model comparison

For each cluster, the HMMs with a different number of hidden states were compared
to find the best model to use in the mixture models. BIC and other information
criteria are common choices for comparison of HMMs with different numbers of
hidden states. Another common option for model selection is cross-validation.

We chose to use BIC as it generally selects parsimonious models. BIC has been
proven consistent for ergodic stationary HMMs (Whiting and Pickett, 1988), but not
to left-to-right HMMs. Here, also BIC consistently chose models with more hidden
states and clusters than is interpretational or plausible.

A likely reason for poor performance of information criteria in this problem was
that we were comparing models which all were considerably simple compared to the
complexity of real life. The goal was to simplify and describe the overall patterns
and dynamics in life trajectories, not to find data-generating models.

However, we did use BIC as one source of information for choosing the number
of hidden states by looking for turning points in BIC after which additional hidden
states were not as profitable. In addition to BIC, the choice of the number of hidden
states was based on interpretability of the model and the prevalence of an additional
hidden state in the most probable hidden state paths—if a hidden state was “visited”
only rarely it was regarded as unnecessary.

6.3 Step 3 a: Combined HMMs

At this step we used the separate cluster-specific HMMs to construct combined mod-
els with 7–12 clusters. For each combined model, we computed the likelihood and
BIC to determine the best number of clusters.

The combined model with the smallest BIC was used for determining the best
number of clusters. Given the best clustering, we computed the most probable paths
of hidden states for each individual.
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6.4 Step 3 b: Mixture hidden Markov models

At this step we constructed six MHMMs with 7–12 clusters. We used the estimated
parameters of respective cluster-wise HMMs as starting values for mixture models.
To avoid non-structural zeros in starting values, we added a small amount of 0.001 to
each starting value (with proper scaling). We estimated models in a similar manner
to the previous step, by using randomized starting values—first with a larger noise
and, after getting closer to the optimum, again with a smaller noise.

6.5 Software

Analyses were conducted with the R software (R Core Team, 2015) by using pack-
ages TraMineR (Gabadinho et al., 2011) for sequence analysis, cluster (Maechler
et al., 2015) for cluster analysis, and seqHMM (Helske and Helske, 2016) for hid-
den Markov modelling.

7 Results

The number of hidden states per cluster varied between six and eight. We applied
both the combined model and the mixture model approach for describing data and
determining the best number of clusters.

7.1 Combined model approach

Table 3 shows the BICs for models with 7–12 clusters. The model with eight clusters
resulted in smallest BIC (even the highest likelihood) and was chosen as the best
model. The model with seven clusters was almost as good; the only difference was
that the two childless clusters (see Figures xx and xxx) were combined into one.

Table 3 Number of parameters, log-likelihood, and BIC for combined models with 7–12 clusters.
The smallest value of BIC is shown in bold.

Clusters Parameters Log-likelihood BIC

7 533 −369075.7 745059.4
8 595 −364825.9 743368.2
9 643 −370746.2 755208.7
10 705 −368985.0 751686.5
11 767 −368977.5 751671.5
12 800 −373550.3 760817.0
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Fig. 5 and Fig. 6 illustrate the HMM structure for each of the eight clusters.
More detailed visualizations with observed sequences and most probable hidden
state paths are shown in the Appendix.

The clusters were well separated from each other by the timing and occurrence
of career and family states. The two largest clusters were characterized by (mostly)
short education and family. They differed in the timing of partnership and parent-
hood transitions which occurred either earlier in life (cluster A with 461 members of
which 59% were females) or later (cluster B, 403 members, 54% males) The third
largest cluster (cluster C, 266 members, 68% males) mostly consisted of individuals
with long education and later family. Another cluster with early family transitions
(cluster D, 159 members, 96% females) was characterized with a long career break
for mostly taking care of children.

Two clusters were characterized by no or very late parenthood. They differed in
timing of the partnerships; the larger cluster (cluster E, 177 members, 51% males)
had earlier first partnerships while in the smaller cluster (cluster F, 116 members,
59% males) partnerships were delayed or omitted altogether.

The two smallest clusters consisted of single parents (cluster G, 47 individuals,
72% females) or parents living divorced or separated (cluster H, 102 individuals,
61% females).

7.2 Mixture model approach

The estimation of ordinary HMMs can be challenging due to multiple local optima
in likelihood surfaces, since typical parameter estimation algorithms often only find
these suboptimal solutions. Therefore, multiple starting values for the estimation
are needed to ensure that the global optimum is found. The same problem is even
more prevalent in complex MHMM settings with a large amount of parameters and
mixture components. In addition, when the structure of the model (the number of
mixture components and/or hidden states) is unknown, the amount of required com-
puting resources naturally multiplies.

Therefore, even after using allegedly reasonable starting values (from simple
HMMs), parallel computation, and extensive computing resources, we were not able
reach satisfactory results. With different starting values the estimation always res-
ulted in a different solution, so finding the global optimum would have required an
unfeasible amount of computing time and/or resources.

Even though we were not able to find optimal MHMMs, we did study some of the
suboptimal solutions. To study the differences of SA and MHMM clusters, we es-
timated a mixture model by keeping the initial, transition, and emission parameters
of the submodels fixed (i.e., estimating only prior cluster probabilities, later referred
to as the “non-estimated MHMM”). This approach was similar to the combined
model approach, but instead of keeping the cluster memberships fixed we allowed
individuals to switch clusters. Each individual was assigned to the cluster with the
highest posterior cluster probability given their observed sequences.
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Fig. 5 HMM graphs for the eight cluster solution (clusters A–D). State abbreviations show ca-
reer/partnership/parenthood statuses: ST=studying, EM=employed, UN=unemployed, EL=else;
S=single, C=cohabiting, M=married, D=divorced/separated; NC=no children, CH=has child(ren).
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Fig. 6 HMM graphs for the eight cluster solution (clusters E–H). State abbreviations show ca-
reer/partnership/parenthood statuses: ST=studying, EM=employed, UN=unemployed, EL=else;
S=single, C=cohabiting, M=married, D=divorced/separated; NC=no children, CH=has child(ren).
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Many individuals switched clusters compared to the SA solution (see Table 4).
Some cluster were more stable; close to 90% of the members of the SA clusters
“Single parents” and “Partners and no children” stayed in the same cluster in the
MHMM solution. Others had many switchers; less than half of the members of SA
clusters “Short education and early family” and “Long education and later family”
stayed in their original clusters in the MHMM solution.

Table 4 Comparison of SA cluster memberships (left) to most probable cluster memberships from
the non-estimated MHMM (top). Probabilities of staying in the same cluster are shown in bold.

MHMM clusters

SA clusters A B C D E F G H Members

Short educ. & early fam. (A) 0.32 0.35 0.15 0.11 0.00 0.00 0.06 0.01 461
Short educ. & later fam. (B) 0.09 0.64 0.16 0.09 0.00 0.00 0.03 0.00 403
Long educ. & later fam, (C) 0.06 0.32 0.43 0.13 0.00 0.00 0.07 0.00 266
Career break & early family (D) 0.04 0.39 0.03 0.54 0.00 0.00 0.00 0.00 159
Partnership(s) & no child (E) 0.00 0.05 0.03 0.00 0.87 0.05 0.00 0.01 177
No or late family (F) 0.00 0.03 0.01 0.03 0.32 0.60 0.00 0.01 116
Divorced parents (G) 0.04 0.00 0.03 0.16 0.00 0.00 0.77 0.00 102
Single parents (H) 0.00 0.00 0.02 0.00 0.00 0.00 0.04 0.94 47

Number of cluster members 207 577 260 228 191 79 138 51 1731

If the MHMM parameters were estimated jointly, the differences compared to
the SA clusters were even larger (we do not report the findings as we were not
able to find the globally optimal model). In both MHMM approaches, the order and
occurrence of states were generally more determining for the cluster memberships
than the timing and duration of states. Fig. 7 illustrates this difference seen in the
cluster “Short education and early family”, showing the observed and hidden state
sequences of members of the SA cluster and the cluster from the non-estimated
MHMM. One can easily see that the variation in the timing of transitions between
states (both observed and hidden) is much larger in the MHMM cluster compared
to the SA cluster.

8 Discussion

When analysing complex sequence data with multiple channels, describing and
visualizing the data can be a challenge. Hidden Markov models and their mixtures
offer a probabilistic model-based framework where the information in data can be
compressed into hidden states (different life stages) and clusters (general patterns
in life courses). Hidden states can capture general life stages that include not only
rather stable episodes (as the fifth hidden state of work, marriage, and children in
Fig. 2) but also life stages characterized by change (as the second hidden state of
searching for a partner in Fig. 2).
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Fig. 7 Comparison of a cluster (Short education and early family) given by SA and the non-
estimated MHMM.

Mixture hidden Markov modelling has several advantages. With posterior cluster
probabilities we get information on certainty of the clustering for each individual
and a measure for the goodness of the classification. We can also extend the model
by adding covariates for explaining cluster memberships or transitions between hid-
den states. The MHMM approach has been used successfully in simpler settings,
e.g., for accounting for measurement error and for finding clusters of “movers” and
“stayers” between two hidden states.

The downsides of MHMM analysis are related to computational issues. Max-
imum likelihood estimation of parameters of a complex MHMM is computationally
heavy. Due to multimodality of the likelihood surface we need to estimate the model
numerous times with different starting values. Also, often the structure of the model
(in terms of the number of hidden states and/or clusters) is not known and in general
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selecting the best structure is a nontrivial task. Thus, finding the globally optimal
MHMM can become unfeasible without constraining the problem.

Using sequence analysis and cluster analysis as a starting point might be useful
by providing preliminary classification and by limiting the set of candidate models
for a complex MHMM setting. In our study we were not able to reach satisfactory
results. Our data was much more complex than in a typical MHMM analysis where
sequences often come from panel data with a moderate number of measurement
points. The multichannel structure, long sequences, and the relative large number
of individuals in our data was a challenging combination for parameter estimation.
Also, typically the number of candidate models is rather limited; when HMMs are
used for accounting for measurement error, the number of hidden states is known
in advance and usually the state space is very limited (e.g., poor/nonpoor or drug
user/nonuser). In our study the model structure was unknown and we expected to
find several clusters, each with an unknown number of hidden states.

Instead of using mixture models, we treated the SA clusters as fixed and estim-
ated HMMs separately for each cluster (the combined model approach). With SA
we found clusters that were adequately well separated by the timing and duration of
life states. Hidden Markov models were used for choosing the number of clusters
and for describing the overall dynamics within clusters.

Clusters found using SA and the MHMM were different in several ways. When
defining sequence dissimilarities, we considered the timing of the events very im-
portant and used Hamming distances. In the MHMM analysis many individuals
switched clusters; the order of states was generally more determining than their
timing and duration. Further research is needed in order to determine distance met-
rics that result in SA clusters which capture similar features as HMMs. Metrics that
weight the order of states instead of their timing such as the number of matching sub-
sequences or the subsequence vectorial representation metric (Studer and Ritschard,
2016), might produce clustering results that are better suited for the starting point
of MHMM estimation. Unfortunately, using these metrics with multichannel data is
not a straightforward task.

Another topic for further research is model selection of left-to-right HMMs and
MHMMs. In our study, BIC performed poorly. Further theoretical and empirical
studies are needed for detecting the reasons for its failure and for discovering selec-
tion criteria that are better suited for finding parsimonious HMMs.

The aim of our study was to describe complex life sequence data. For that goal,
SA and the combined HMM approach gave satisfactory results in a reasonable
time. We were able to find meaningful clusters and to visualize their complex life
course information by using stacked sequence plots, combined state distributions,
and HMM graphs.
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Appendix

Detailed visualizations of the eight SA clusters and the respective HMMs. Figures
show state distributions of combined observations at each time point (top), observed
sequences in three life domains and the most probable hidden state paths given the
HMM (middle), as well as HMM graphs with initial and transition probabilities
(bottom). See Sect. 5 for more information on how to interpret the visualizations.
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